pat 1001 害死人不偿命的(3n+1)猜想

卡拉兹(Callatz)猜想:

对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 ( 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (,以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……

我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n,简单地数一下,需要多少步(砍几下)才能得到 n=1?

输入格式:

每个测试输入包含 1 个测试用例,即给出正整数 n 的值。

输出格式:

输出从 n 计算到 1 需要的步数。

输入样例:

3

输出样例:

5
思路:递归即可。代码如下:
#include <iostream>
#include <math.h>
#include <algorithm>
using namespace std;
int number=0;
void fact(int s)
{
    if(s==1)return ;
    if(s%2==0){
        s=s/2;
        number++;
        fact(s);
    }
    else {
        s=(3*s+1)/2;
        number++;
        fact(s);
    }
}

int main()
{
    int n;
    scanf("%d",&n);
    fact(n);
    printf("%d\n",number);
    
}

 

上一篇:Python中的栈溢出及解决办法


下一篇:数据结构1(概述)