Python中的栈溢出及解决办法

1.递归函数

在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。

举个例子,我们来计算阶乘n! = 1 x 2 x 3 x ... x n,用函数fact(n)表示,可以看出:

fact(n) = n! = 1 x 2 x 3 x ... x (n-1) x n = (n-1)! x n = fact(n-1) x n

所以,fact(n)可以表示为n x fact(n-1),只有n=1时需要特殊处理。

于是,fact(n)用递归的方式写出来就是:

 

Python中的栈溢出及解决办法

上面就是一个递归函数。可以试试:

 

Python中的栈溢出及解决办法

如果我们计算fact(5),可以根据函数定义看到计算过程如下:

 

Python中的栈溢出及解决办法

递归函数的优点是定义简单,逻辑清晰。理论上,所有的递归函数都可以写成循环的方式,但循环的逻辑不如递归清晰。

使用递归函数需要注意防止栈溢出。

2.栈溢出

在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。可以试试fact(1000):

 

Python中的栈溢出及解决办法

尾递归

解决递归调用栈溢出的方法是通过尾递归优化,事实上尾递归和循环的效果是一样的,所以,把循环看成是一种特殊的尾递归函数也是可以的。

尾递归是指,在函数返回的时候,调用自身本身,并且,return语句不能包含表达式。这样,编译器或者解释器就可以把尾递归做优化,使递归本身无论调用多少次,都只占用一个栈帧,不会出现栈溢出的情况。

上面的fact(n)函数由于return n * fact(n - 1)引入了乘法表达式,所以就不是尾递归了。要改成尾递归方式,需要多一点代码,主要是要把每一步的乘积传入到递归函数中:

 

Python中的栈溢出及解决办法

可以看到,return fact_iter(product * count, count + 1, max)仅返回递归函数本身,product * count和count + 1在函数调用前就会被计算,不影响函数调用。

fact(5)对应的fact_iter(1, 1, 5)的调用如下:

 

Python中的栈溢出及解决办法

尾递归调用时,如果做了优化,栈不会增长,因此,无论多少次调用也不会导致栈溢出。

遗憾的是,大多数编程语言没有针对尾递归做优化,Python解释器也没有做优化,所以,即使把上面的fact(n)函数改成尾递归方式,也会导致栈溢出。

优化尾递归的装饰器

有一个针对尾递归优化的decorator,可以参考源码:

 

Python中的栈溢出及解决办法

现在,只需要使用这个@tail_call_optimized,就可以顺利计算出fact(1000):

 

Python中的栈溢出及解决办法

上一篇:阶乘计算——递归


下一篇:pat 1001 害死人不偿命的(3n+1)猜想