猪(最大流,建图)

题意

猪(最大流,建图)

思路

这道题的建图是这样的,每个顾客作为流网络中的点。并设立虚拟源点\(S\)和虚拟汇点\(T\)。

对于一个顾客,考察每个他能开启的猪圈,如果该猪圈之前没用过,则源点\(S\)向他连容量是该猪圈起始猪数的边。如果该猪圈之前用过,则从上一次用这个猪圈的顾客向他连一条容量是\(\infty\)的边。

跑一遍最大流即可。

这道题建图特别经典,但是我还没想明白为什么这么建,待补

代码

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>

using namespace std;

const int N = 110, M = 20210, inf = 1e8;

int n, m, S, T;
int h[N], e[M], ne[M], f[M], idx;
int d[N], cur[N];
int w[1010], last[1010];

void add(int a, int b, int c)
{
    e[idx] = b, f[idx] = c, ne[idx] = h[a], h[a] = idx ++;
    e[idx] = a, f[idx] = 0, ne[idx] = h[b], h[b] = idx ++;
}

bool bfs()
{
    memset(d, -1, sizeof(d));
    queue<int> que;
    que.push(S);
    d[S] = 0, cur[S] = h[S];
    while(que.size()) {
        int t = que.front();
        que.pop();
        for(int i = h[t]; ~i; i = ne[i]) {
            int ver = e[i];
            if(d[ver] == -1 && f[i]) {
                d[ver] = d[t] + 1;
                cur[ver] = h[ver];
                if(ver == T) return true;
                que.push(ver);
            }
        }
    }
    return false;
}

int find(int u, int limit)
{
    if(u == T) return limit;
    int flow = 0;
    for(int i = cur[u]; ~i && flow < limit; i = ne[i]) {
        cur[u] = i;
        int ver = e[i];
        if(d[ver] == d[u] + 1 && f[i]) {
            int t = find(ver, min(f[i], limit - flow));
            if(!t) d[ver] = -1;
            f[i] -= t, f[i ^ 1] += t, flow += t;
        }
    }
    return flow;
}

int dinic()
{
    int res = 0, flow;
    while(bfs()) {
        while(flow = find(S, inf)) {
            res += flow;
        }
    }
    return res;
}

int main()
{
    scanf("%d%d", &m, &n);
    memset(h, -1, sizeof(h));
    S = 0, T = n + 1;
    for(int i = 1; i <= m; i ++) scanf("%d", &w[i]);
    for(int i = 1; i <= n; i ++) {
        int a;
        scanf("%d", &a);
        while(a --) {
            int id;
            scanf("%d", &id);
            if(!last[id]) add(S, i, w[id]);
            else add(last[id], i, inf);
            last[id] = i;
        }
        int b;
        scanf("%d", &b);
        add(i, T, b);
    }
    printf("%d\n", dinic());
    return 0;
}
上一篇:企鹅游行(最大流,拆点,枚举)


下一篇:最优标号(最小割,位运算)