【深度学习入门到精通系列】SE-ResNet module讲解

文章目录

1 概述

SENet是Squeeze-and-Excitation Networks的简称,拿到了ImageNet2017分类比赛冠军,其效果得到了认可,其提出的SE模块思想简单,易于实现,并且很容易可以加载到现有的网络模型框架中。SENet主要是学习了channel之间的相关性,筛选出了针对通道的注意力,稍微增加了一点计算量,但是效果比较好。

【深度学习入门到精通系列】SE-ResNet module讲解
我们可以看到,已经有很多工作在空间维度上来提升网络的性能。那么很自然想到,网络是否可以从其他层面来考虑去提升性能,比如考虑特征通道之间的关系?我们的工作就是基于这一点并提出了 Squeeze-and-Excitation Networks(简称 SENet)。在我们提出的结构中,Squeeze 和 Excitation 是两个非常关键的操作,所以我们以此来命名

上一篇:python中numpy.squeeze()函数的使用


下一篇:0617 每日文献阅读 打卡