TVM性能评估分析(三)

TVM性能评估分析(三)

 TVM性能评估分析(三)

 

 Figure 1. TVM’s WebGPU backend close to native GPU performance when deploying models to the web.

 TVM性能评估分析(三)

 

 Figure 2.  WebGPU is to write shaders for primitive operators in deep neural networks

 TVM性能评估分析(三)

 

 Figure 3.  Build a WebGPU runtime inside TVM’s JS runtime

 TVM性能评估分析(三)

 

 Figure 4. Comparing the execution of a full computational graph via TVM’s WebGPU backend and native targets

 TVM性能评估分析(三)

 

 Figure 5. 2D convolution with data layout in NCHW4c and weight layout in OIHW4o4i. Left: The input tensor in NCHW4c layout. One moving filter of the kernel is colored in blue. One element of the input and kernel is colored in grey. Mid: The packed input and kernel in the grey block. Right: The output in NCHW4c layout. Inside the one element depicted, there are four packed elements in channel sub-dimension.

 TVM性能评估分析(三)

 

 Figure 6. Workflow of running quantized models

 TVM性能评估分析(三)

 

 Figure 7.  A full deep learning compiler stack to support machine learning workloads for diverse hardware backends.

 TVM性能评估分析(三)

 

 Figure 8. Golang Interface over TVM Runtime

 TVM性能评估分析(三)

 

 Figure 9.  Import, Compile, Integrate and Deploy

上一篇:WebGPU | 相关知识概述


下一篇:WebGPU图形编程(3):构建三角形图元<学习引自徐博士教程>