TVM性能评估分析(六)

TVM性能评估分析(六)

 TVM性能评估分析(六)

 

 Figure 1.  The workflow of development PC, compile, deploy to the device, test, then modify the codes again to see whether it accelerates.

 TVM性能评估分析(六)

 

 Figure 2.   The Android APP takes shared library as input and runs compiled functions on the mobile phone. 

 TVM性能评估分析(六)

 

 Figure 3.  Build TVM functions and NDArrays on a remote device. The ability to cross-compile to different platforms makes it easy to develop on one platform and test on another.

 TVM性能评估分析(六)

 

 Figure 4.  The instruction to build for your Android device. Once the APK is built, sign it using apps/android_rpc/dev_tools and install it on the phone. 

 TVM性能评估分析(六)

 

 Figure 5.  The NNVM compiler support of TVM stack, we can now directly compile descriptions from deep learning frameworks and compile them to bare metal code that runs on AMD GPUs.

 TVM性能评估分析(六)

 

 Figure 6.  With ROCm backend, the generic workflow 

 TVM性能评估分析(六)

 

 Figure 7.   The ONNX library to load the ONNX model into the Protocol buffer object. 

 TVM性能评估分析(六)

 

 Figure 8.  An end to end compilation pipeline from front-end deep learning frameworks to bare metal hardwares.

 TVM性能评估分析(六)

Figure 9.  Typical workflow of NNVM Compiler

 TVM性能评估分析(六)

 

 Figure 10.  Separation of Optimization and Deployment

 TVM性能评估分析(六)

 

 Figure 11.  Time Cost of Inference on K80

 TVM性能评估分析(六)

 

 Figure 12.  The cost of inference on Raspberry PI

上一篇:01activiti - 工作流概念


下一篇:Lab: Insufficient workflow validation:工作流程的验证不足