TVM性能评估分析(七)

TVM性能评估分析(七)

 TVM性能评估分析(七)

 

 Figure 1.  Performance Improvement

 TVM性能评估分析(七)

 

 Figure 2.  Depthwise convolution

 TVM性能评估分析(七)

 

Figure 3.  Data Fusion

 TVM性能评估分析(七)

 

 Figure 4.  Data Fusion(2)

 TVM性能评估分析(七)

 

 Figure 5.  Shared memory can be seen as cache in GPU. It is on-chip and much faster than global memory.

 TVM性能评估分析(七)

 

 Figure 6.   Shared memory banks are organized such that successive addresses are assigned to successive banks. 

 TVM性能评估分析(七)

 

 Figure 7.  Consecutive threads access consecutive memory addresses, thus avoiding bank conflicts

 TVM性能评估分析(七)

 

 Figure 8.  Computational Graph

 TVM性能评估分析(七)

 

 Figure 9.  Sublinear memory optimization functionality that allows user to train 1000 layers of ImageNet ResNet on a single GPU.

 TVM性能评估分析(七)

 

 Figure 10.  We build a low level representation which is based on index formula, with additional support for recurrence computation.

 TVM性能评估分析(七)

 

 Figure 11.  The algorithms described in TVM are then processed in a scheduling phase to apply transformations that are tailored to the target hardware back-end.

 TVM性能评估分析(七)

 

 Figure 12.  Multi-language and Platform Support

 TVM性能评估分析(七)

 

 Figure 13.  Remote Deployment and Execution

 TVM性能评估分析(七)

 

 Table 1.  Raspberry Pi

 TVM性能评估分析(七)

 

 Figure 14.  GPU Results

 

上一篇:茅厕级C++任务队列——最大的优势就是没有优势


下一篇:C++ 智能指针