向量旋转 UPC 2217

这道题目是13山东省省赛的签到题,题目大意是给等边三角形的两个定点,让求逆时针旋转之后的第三个点的坐标,原来不会向量的旋转,在网上找了找,找到一篇挺好的,直接贴过来。

向量的旋转

实际做题中我们可能会遇到很多有关及计算几何的问题,其中有一类问题就是向量的旋转问题,下面我们来具体探讨一下有关旋转的问题。

首aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAS0AAAEfCAYAAAAUUZBIAAAACXBIWXMAAA7CAAAOwgEVKEqAAAANsElEQVR4nO3dPXIbRxqA4WbVnoQqBa7yIeAAKkXKdILNSCpQ6gM4dUBS2Z5AmSKWGAiHcJUDl3gVLiEKJgjOADOD+fu6nyfYtUSIBDGYd7obg8F/7h8kgCD+M/UdAGhDtIBQRAsIRbSAUEQLCEW0gFBECwhFtIBQRAsIRbSAUEQLCEW0gFBECwhFtIBQRAsIRbSAUEQLCEW0gFBECwhFtIBQRAsIRbSAUEQLCEW0gFBECwhFtIBQRAsIRbSAUEQLCEW0gFBECwhFtIBQRAsIRbSAUEQLCEW0BnWXPv32Kp2vNn9epOvv39LZadVNP6XfXp2n9U0vvt6ny+VY9xFiEa0h3d2kz6vtv1ilzzd36ayyWhuL9MurYe8WRCZaA7q7+fxj5LRt9fkm3Z2dpRfZOn2dfl1/fYw7BoGJ1mBu05//zgsXabFYpdX6j6vP6eburHqK+MOv6fW+gRgUTrSGcvslXW3+++L39L9fUnr1WK10/udtOnuxaLVMl/f36XLUOwnxiNZAbr9skrVI1x+X6fRh9HTxMPL68bdXX9LtQ7SstUN7ojWI2/TUrPfp7Y/p3jK9u3jo1WO10pfby7RULWhNtAZw9+mPf6eGF78/LbovP16nxdXjaQ1XX27TpWpBa6LVu7t0s3Wew9Wbk6e1rW2miNCJaPXtxblZda7SH58+puXec7aAXaLVs6pzs+rUnrMF1BKtXm2fm1Xzdpytt+scPmcL2CVafdo+NytdpHdVC1anb9P7RXo80bTR23rGd3Jy0sv3ub+/7+X7wDbR6tHTuVkPLt7VLLKfprPfL9L56vG2U00R+wpT158haHQlWj1aXt6n+yantC8vH3ba8c59HyNQbdXdJzHjENEKbnvn3+zwc4xUU1W/D2wTrcB24xQ5VlV2fx8RY020ghoyUH3Goc/7GXsU1uKCkOwlWoH0GYCxdvq6n3Ps7xIuYJ0uCEkV0Qrg2B18jjt11X3q+ntu/t0cf8+NVheEZC/RmqljQjXnnXef3fvd9jGY7+ir6wUhqSJaM5PbYvoxjonYrEZfrS8IyT6iNRNdYrXeIUuKXJdTOuYQLxeE7JdoTaxtdGYxcpjY9mPQ9PGbLl4uCNk30ZpIm1i13dHW37uUuLUN2NjxckHI/onWBJoGq8mOVdoUcZ8208dxwu6CkEMQrRH1GSvqNY3X4KMuF4QchGiNQKymMXW8XBByGKI1sCbBEqthtYlXf9vCBSGHIloDmXp0VdJifFNN1v96G3VlckHIORKtAYw9urIY39xYo65IF4SMRrR6dmhnMPqZhybxOiZcc70gZA5EqyfWrmI6NEqdwxn1PCdaPTC6im3oURf9Eq0jzSVYVSMGO1o7TUddm9syDdHqyHQwT01f1HBAmI5odTCX0RXDyOEDQnImWi0JVjmaTBdt7/GJVgsRg2XHGpbHd3yi1VCEYDnJtF9trtU1h+1fCtFqwMe7l6fL9ek9F8YhWgcIVnkObfO6rwvXOERrD8EqT5NtLlzTEq0aOQXLjtRMm20uXNMRrQqRg2Uxvpsu21y4piFaOyIHi/4d2ubCNT7RasiTL1910Wm6zYVrXKK15dgnL/H0tc1Ny8cjWj/lFCxXfGim78jUhctj3y/RSt4YW6Kh1i6Fa3jFR8vCe3mm2ubC1Y/io1XHk6s8fW1zC/PDKjpaOa1jNWGHGW+bW5gfTrHRyj1YdpqXxt7m1reGUWS07MzlmeogJVz9KzJadTyJ8jTXg5RwdVNctHKfFvLcHF4dNlXvV1HREqyyju5zCNb2zzNN7EdR0SqNI3y1qSJhe/SjmGgZZZUl0vY22mqniGhFegJzvDlvb9PE4xURLcph+pW/7KM156PuVHI9qs9p4X0fo63jZB+tKiU9MUpZ/I0SrI1StssQso6WJ0UZogVrH6Otw7KOVhVPiHLMfVubJnaTbbSMsspgzbI82UarSqlP5Fwvv5xDsKxttZdltDwJ8pf7Ns7hoDKULKNVxRMgHzktvK8ZbbWTXbRs/CHdpU+/vUrnq+2/u0hf7y/TcqR7kFuw9jHaqpZdtKrY8NVa7RS3H9LJm6uKL1ylNydX6eLrfbocuFw5B8toq7msomWj1ztup7hNHyqD9eTqzW/pl+/f0tlpxx9xhOjB2sdo66WsolXFBj/e3ac/0lOytqeDDzE7efPza6t0/udtOhtouJXDK4WHGG01k020bOyh3KWbz6t//3TxdXv9apkuv148jLJ+Ju2vfx5uvUx9D7ZKCNY+RlvPZROtKjZ0D+5u0lOzLtK73YHU8t3D3149jrZWn9PN3VmvU8TSDkZGW4dlHS0Oa3cUf1x0H0vOC+90l0W0HJmaiXQUF6znTBGfZBGtKjZwnkrYrpEOLlPINloMoepE0u1XEH9Nr3tYzyp94Z39wkfLEWlgp2/T+0VKq9X6D3+lf+5SWm6H6fbL0+kQi1/SqyN/nGA9yvVN7n0IH60qNmy99jvDaXr9a1qfhvXjf85ffUivt8/T2jrpdPH+7VGnOwgWTWQZLfq1/HidFlfnj92qfQXxIv1+xLkORszNGG0Fj1bVE730DTqI07P07evfNe89XFuk6+/d3zTtlcJqFuSrhY4WI1pePuxE77YW3X9aXKfv3846TwsFi7ZEix+aTTuW6fLhNpcj3B/Boo5oFWgu0w4L792Uvq4VNlrWs2ITrGbmcoCZk7DRIi47IccQLUZl4Z1jhYyWI/Uwhl4rEaz+lLyuFTJaVUrdgF2NvVYiWN1Z13oum2gRk2DRlmgxOK8U0ifR4pljpiFVERIs+iZavNAlKOs47S4OW4dhCOGi5aTS/vS5wLv5XptwWXjvl+trPQkXLeZrO1z7bgPHEC1GI1j0QbQYhWDRF9EqXJ9rJV4pZAyiRS8Ei7GIFkdzasM4vIL4KHy0Sttgc+OVQsYWKlqO6ONpcgQXLKYQKloMo++rCAgWQxItOrHwzlREi9YEiymJFq0IFlMTLWq5agNzJFr8cGgx3iuFzIVocZBgMSeiRWeCxRREi70svDM3osW/mp5kKlhMSbSAUESLVoyymJpo0ZhgMQeixTN161qCxVyIFi/shkuwmBPRopJQMVeiBYQSKlqukQ2EihaUzAskj0SLarcf0smbq/qvL67T929n6XS8ewQ/iBbdrM7Tq5PP6fr7t3SmXIxItDjCKp3/eZvOLpdT3xEKIloctjMVvP1wkvbNHGFIokVLd+mfvzb/vUjXH42yGFe4aDntYQI/1q/Od/5yYT1rRK7P/yRctJiLVfr7+8P/idZkSj1QixadXb05SX9df0/fDLcYkWhx2O45WVvncK3O/5s+vTVNZDyiRXvLd+kiXSUvIDKFbKJlMX48d5/+EKwRWYR/LmS0mn4AAz2pfPXwp8X79NbUcHQlH6BDRou5WKTr/3n/IeMSLbrxhmkmklW0rGv1aHn58FheTn0vimcZ5KWw0bKuRalKPzCHjRZQJtECQskuWta1yIXlj2qho2Vdi9I4IAePVh2jLchX+GgZbZEjn7xTL3y0gLJkGy1TRKIyc9gvi2iZIpI7B+AnWUQLKEfW0TJFJBozhsOyiZYpIrly4H0um2jVMdoiCgfdZrKKltEWuXHAfSmraNUx2mLuHGybyy5aRlvkwoG2WnbRqmO0xVw5yLaTZbSMtiBfWUarjtEWc1N3cPU8rZdttIy2IE/ZRquO0RZzYZTVTdbRMtoiGsE6LOto1THaYmoOpt1lH6260ZZwMRXTwuNkHy0gL0VEy2iLuTDKOl4R0VoTLubK86+dYqIFU7P43o+iomW0xVRMC/tTVLTWhIuxGWH1q7howVw4SHZTZLSMthiLaWH/iozWmnAxNMEaRrHRWhMuhmIdazhFR2sf4aKrfcHynDpe8dHadyUI4aJPnkv9KD5aay5hQ1+sYw1PtH6yvsWxBGscorVFuOjKSH08otWQcFHHwvu4RGuHhXnaEKzxiVYF4aIJwZqGaNUQLvYRrOmI1h7CRRXBmpZoHSBcbBOs6YlWA8LFmmDNg2g1dChcm9uQn0PnYNnu4xKtFg693ceoKz+CNT+i1ZJwlUOw5km0OmgSrs3tiKfJW3Js2+mIVkebJ61RV16MruZPtI5kupgPwYpBtHpguhib6WAsotUT08WYjK7iEa2eGXXFYHQVl2gNoMnlm8VrGk0v1me7zJdoDaTJdHHzdTvIOIyu8iBaAzPqmp7RVV5EawRtRl3bt+c4YpUn0RqReI1DrPImWhNo+jmL4tVOm0/E8ZjGJVoTaTrq2r2Nne25th/d5fGLT7Qm1iZeu7crdQfs8hmDpT5WORKtmWgbr+3blrJDihVrojUzx8Rr93tEd8ynNufyGPCSaM1Ul3htRI1YHx8tH+V3pTvRmrntnbDrTl3176beufsI1MbUvwvjEq1A+gjYoX/fdwD6jNM2oSqXaAXVZ8C2DRWZvogVopWBoQI2ByLFLtHKzO5OHi1iIsUhopW5qgjMJWQCRReiVaB9seg7aMJE30SLZ0SGuRMtIBTRAkIRLSAU0QJCES0gFNECQhEtIBTRAkIRLSAU0QJCES0gFNECQhEtIBTRAkIRLSAU0QJCES0gFNECQhEtIBTRAkIRLSAU0QJCES0gFNECQhEtIBTRAkIRLSAU0QJCES0gFNECQhEtIBTRAkIRLSAU0QJCES0gFNECQhEtIJT/A5FX9taJXyL8AAAAAElFTkSuQmCC" alt="" name="图像1" width="204" height="195" align="left" border="0" hspace="12" />先我们先把问题简化一下,我们先研究一个点绕另一个点旋转一定角度的问题。已知A点坐标(x1,y1),B点坐标(x2,y2),我们需要求得A点绕着B点旋转θ度后的位置。

如图:A' 就是A点绕B点旋转θ角度后得到的点,问题是我们要如何才能得到A' 点的坐标。(向逆时针方向旋转角度正,反之为负)研究一个点绕另一个点旋转的问题,我们可以先简化为一个点绕原点旋转的问题,这样比较方便我们的研究。之后我们可以将结论推广到一般的形式上。令B是原点,我们先以A点向逆时针旋转为例,我们过A' 做AB的垂线,交AB于C,过C做x轴的平行线交过A' 做x轴的垂线于D。过点C做x轴的垂线交x轴于点E。

令aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAS0AAAEfCAYAAAAUUZBIAAAACXBIWXMAAA7CAAAOwgEVKEqAAAARmklEQVR4nO3dPVLjyhqA4c9VdyWmJqDqLMIEpojIZgUns0VAygImncA/2ayAjIjCAV4EVSeYwlvhSgZhYSTrr7vVX/f73ODOmWEGG1uvPrVl+X9vKQEAJf439A0AgDaIFgBViBYAVYgWAFWIFgBViBYAVYgWAFWIFgBViBYAVYgWAFWIFgBViBYAVYgWjFlfjGS+TX+RPMnbYnr4g82NjC6X6S8msnp9ltl4oBuIIBAtGHP1cyKy3YosH2STRivP1uZh+f6L5I5goTeihVqj0UiaXMFoPLuTJB21lun/HjYLmWbV2q3l175Z6ZR1O635F4B6RAsnZcHK/78+XFO5TtJBa5kNWxtZpNXaPd7LNvsjpiwYQrTQSBasJuGa3q5kspzLdn+IKPKwX+RKm3XNlAUziBYq5ZHKp61GxlfyvrS1lF8XL+9T1mQlHBnCFKKFxppNW2OZ3SUyT6O1zRblJTsynAlHhjCFaKFUVZwahWt6Lcl+OT6TCEeGMIlo4Zu6KDVd38pMVrdCs2AS0YJxu/WvzynrjpcMYRjRwhdNJ6iyaWtzM5LL5eFrmLJgA9HCp6bByp06TJysXuWZKQsWEC30UgzXdPEmb4uhbxFCR7Sw13bKAoZCtNBbm1cTgb6IFowEh2DBFaIFggNViBYAVYgWAFWIFgBViBYAVYgWAFWIFgBViJZVO1lfnMnHFYfl5Edo7dZycTbfX+kzeXqTBe80BkoRLZt2j3K/Lf7GVu4fdzI7+UbiiZyf2b1ZgGZEy6LPT6Ip2N4/ym5Wcvnh8Q/5J/tzFzcMUIxoWbOR35/HhROZTLb7zzFNqyWPu9mJj9P6R35wRRegEtGyZfMgn9fDS+7kz7nI2Xu1ZP57I7Nvi1ZTWby9CVd2AU4jWpZ8fhT8xycrj9Pp6f3Tl+Xbx8YDaI5oWbGRQ7N+ytX+cO/w6ctS/Nh4AK0QLQsOH+zw9TP/Pj99WQ4fGw+gHaJl3E4eC+c5LC9Hsiz7Mg4RgU6Ilmnfzs2qspRf61uZ8uEPQCtEy7Cyc7OqVJ6zBaAS0TKqeG5WxdtxCm/XqT9nC8AxomVS8dwsSeS6bMFqfCU/J/J+ommjt/W4l10zvsnv1eEyzrCBaBl0ODcrlVxXLLKPZXaXyHz7/rVDHSJ2iZDJ70HQ0BXRMqjxh5VOF+lG6+7cdxeBaqvqNhEz1CFayhU3/nyD9zFSTZXdH6CIaCl2HCfNsSpzfH+IGDJESyHbcTqOQ58PczV5W3VPYS0uCImTiJYiJgPgaqOv+j5974u6gHW6ICTKEC0F+m7gPm7UZbep6/3M/56P9zPX6oKQOIloecrUVOXzhnys7LC0DX+nr64XhEQZouUZ0+tVGqaQKn0i5tX9bn1BSJxCtDxhe3G9z2K6L7qc0uFDvLggpFlEa2AuT1PwYQM2oXj7m/78hrvvXBDSNKI1kDax6rKR1n1v7eHKtf3ZuI4XF4Q0j2gNoGl4bG5YoUxdRW0OH92EmwtC2kC0HHIZq6YbcEhTV67NfS9+vXFcENIKouXAkJNVkw04xKkrM3S8uCCkHUTLsibBchGL7HvEOHVlhpk6uSCkLUTLkqHXrco2wJinrkzTcOdf20sgF4T0EdGywPV01WRjbPv1TF397r+mC0JqQ7QMq9sYfAlBm6krRE3vf9fHy9cLQoaAaBniy9pVW22ntNDU3f+QD5e1IloGaJmuqrDWZXfqgllEqydfglU2MbTd0GJe68o0nbryr8UwiFZHWg8H6zB1NTtcDjneviNaHfgyXdkU89QVwgeEhIxotRRDsHJMXfWHiyHeb98RrRY0BsvVhhXrBhzr/R4S0WpIQ7Bsnr4Q49TV5lpdodxnDYhWA3y8+0Esa11drk+v/T5rQbRqEKzvQp+66h7zqj8nXG4QrRMI1mkhTl1NHnPCNSyiVSGkYNnckEKauto85oRrOESrhOZgDfVeQu1TV5fHnHANg2gd0RysoYU0deXqbifhco9oNcSTrzltU1fVbW16+wiXW0SroO+TFwdapi5Tj3nsl/hxiWh9CClYJq74YPO2HBvqtpmOTNV9Zdoyi2gJb4y1zcepy9baJeGyL/posfDuji9T11CPOeEyI/poVeHJZYePU1fO1PdjYd6uqKMV0jpWEz5tMENNXa4ecxbm7Yk2WqEHS8NG43rqcv2Ys75lR5TR8n1jbkv7/XExdQ21kyJc5kUZrSpan0Rlt1tbyGxOXb7+LAhXN9FFK/TDQu1MT10+vDqs4VBdk6iiRbB07N1NTV0+BKv4/ThMNCOqaMVG+x7e1lrXUJHQ/nj4IppoMWXp1HXq0vR4M221E0W0ND2BUa7p1FX3bwyNw8T+oohW6E6dfd3m97t8D8C14KPFlIWMT48301Y/wUerDE+MuJx6vDc3I7lclvxB8iRvi6nV28T02k3Q0eJJgapg7dYXcjbfVv/Fl7+yk6mM7dysSkxb9YKOVhmeEKgNliMcJnYTbLRUTVmbGxmVHqPkJrJ6fZbZuFt0y34Wbf6dITci449j+rP+GqzDz7bwRXJz8dfs94UxwUarjN6911bmZyOZl25g9Xy6/HIXVbezS9A2D4Wdw2Qlr8+zkkPAqSye7a1nFbG21V6Q0Qr3SZDF60KkQ7hC0+0x3kixWcldWbD8oGmn4lqQ0Sqj5gnwbe+fHqqMLuWwraXh+r2RmcVXtnzXeae0+ysvn/+RyLUnP0KmrXaCi1Z4D356qJI+qa+LL80vH2STRsv9NreT9cWZfF3DTuTpbeHstoT3+FZj2ioXXLTKhPDAT29XMlnO0zkr8yJ/d+nv9Ty2abVRVL5YsJTL0VKSpzexPfzVXbWhXdCW8rBJY8u0pU5Q0Qr6QR9fyc9JenC4zf5jK/+9Zr/X/K/33ShuTr66mSbg8kLOB1praxze8Q/5R+Qj/Olt/rWW26m/61oZpq3vgopWGR5wMw7JKh4OFtfb7K61mXk71lRuVxNZ5se327mcjf4rObx9P+XhtvSVRXuYtpoJJlrBP9i7R7nf5v8xkfMzZ9/4y38lT8UNfCqLpySdsj6SZukscpPvHx3P7iRJo3WI8Pvh7TeTldy2/tftYNr6KpholQnpgd78nn8e1sjkp1y5GgHSWB6UvOI2vU5/d/kege29PO5mnp+Okb2w8ZSWoPiKrD+YtuoFHa0wHJ/yYPb8onZ78YqpxBJ7l0t+f0V2sVvLxVlhZ/BpIqs/fq91xSyIaAW1Z9qvs8yr/zx56vwqnaa9eN8L/jUynsnz26z/v+MAh4gHQUSrTJAPsOXLpWjQ9YMsNNG0cxlCsNEKijexKjuRtHj4+o/8MHBMxYUbcYr6aAWxR5ou0g1yMfStKDe+KvxHyUmtm4fDetvkXPq+qEmw3ml/k7tN6qNVhge2WvuNoVio7A3bN/KjeJ5W4aTTyc+rXovXBAtNBBktmDeR/EzyqlcQE7nrca5DEBOzA0xbyqPV9+J2aO75KTlxocLsOl/d3zTt0ydB+4QF+XKqowWH9utu19/OGau+kF4zBAttES3sNTvs+Dgp08HtIVioQrQi5MthBwvv3cS+rqU2Wqxn6UawmvFlB+MTtdGCXmyE6INowSkW3tGXymixp7bD9loJwTIn5nUtldEqE+sD2JXrtRKC1R3rWl8FEy3oRLDQFtGCdbxSCJOIFr6oCkyTw5OyCBEsmEa08M1xUJos+mZfc/x1rMPABnXR4qRSc0wu8Ob/Vh4uFt7N4vpaB+qiBX8Vw3Xqa4A+iBacIVgwgWjBCYIFU4hW5EyulfBKIVwgWjCCYMEVooXeOLXBDV5BfKc+WrE9YL7hlUK4pipa7NHdaXpCaRWCBVtURQt2nDoZtMvhx1CXt0EciBY6GXLhvep7EDT3hlhTI1pojVcKkcundJePPdFCKwQLQyNaqFT28jpwzPW0RbSwV3dlBl4pxCkuw0W0UItgwSdEC50RLBS5mraIFjohWBiK0WgNsVDL4vAw6n7uRC1OLqYto9Gy/UTlUsv2mdoJ2NyZtPm3Y9ip+Xgf89tkY/vk8BBBq9xoNjcyulye+JuJPL0tZGrlVnWnZcdtc9oiWgCMKn64CZMWrIvyI9gnK3l9nsl46NsRgGKomLTgTJThghpEC6XyvWQUV8bczuVsNP/6e8mTvC18W9HyG2fEA1CD9x5W4BrZgH+4NA3gmpKFeB9Pd+AigPBH4Tym0kV5JRs67BoimkQL3ewXr+9l9fosM8oFh4gWetjK/PdGZtpfZSt79VCyFxDfRPtdCxHRQr2jQ8HNzUhOvgMGUTs8PyaHSXy3louzebqby55Or/LcYzwnWmhpJ39f8l+nT8pbRhF8NV28yurlTObbwyS++f0erOz8tz7ByqiLFqc9DKD08Gmiez1rukifM4uhb0Vjut6hMJbZn5XcZ5PV8lJuzlfysp+8EnkycLytLlrwxVb+exXh5cPheL2jHs/kz+pezuZbWc7fd3jJk5mrZhAtdLa8HMlLz/UJoC2ihXrH52QVzuHazv+V9ZXiw0TYsVvLv+mUlS0jJEm6g1umE9fljVwbuEYZ0UJ702tJZCm8gIhyO1n/my+838licSbn+4X5pVzeXPd+I3ow0WIx3p3d+hfBckjXIrzI+iILVParw8L77C7ZRysdt+TiPMJTHrjek2MVJ1/uTX7KFYeGzvm8g549v8ns+DcNvlqrMlrwxURWf3j/IdwiWuiGN0xjIEFFi3Utgz7GeX6mw2IZ5Du10WJdC7GKfSeiNloA4kS0AKgSXLRYg0EoWP4opzparGshNuyQlUerCtMWEC710WLaQoh8/OQdX6iPFoC4BBstDhGhFUcOpwURLQ4RETp2wAdBRAtAPIKOFoeI0IYjhnrBRItDRISKHe9XwUSrCtMWtGCn20xQ0WLaQmjY4X4XVLSqMG3Bd+xsmwsuWkxbCAU72nLBRasK0xZ8xU62nSCjxbQFhCvIaFVh2oJvqnauPE+rBRstpi0gTMFGqwrTFnzBlNVN0NFi2oI2BKte0NGqwrSFobEz7S74aFVNW4QLQ+GwsJ/gowUgLFFEi2kLvmDK6i+KaGUIF3zF86+daKIFDI3FdzOiihbTFobCYaE5UUUrQ7jgGhOWWdFFC/AFO8luoowW0xZc4bDQvCijlSFcsI1g2RFttDKEC7awjmVP1NE6hXChq1PB4jnVX/TROnUlCMIFk3gumRF9tDJcwgamsI5lH9H6wPoW+iJYbhCtAsKFrpjU3SFaDREuVGHh3S2idYSFebRBsNwjWiUIF5ogWMMgWhUIF04hWMMhWicQLpQhWMMiWjUIF4oI1vCIVgOECxmC5Qei1VBduPKvQXjqzsHicXeLaLVQ93Yfpq7wECz/EK2WCFc8CJafiFYHTcKVfx30afKWHB7b4RCtjvInLVNXWJiu/Ee0euJwMRwESweiZQCHi7pxOKgL0TKEw0WdmK70IVqGMXXpwHSlF9GyoMnlm4nXMJperI/HxV9Ey5Imh4v5n7OBuMF0FQaiZRlT1/CYrsJCtBxoM3UVvx79EKswES2HiJcbxCpsRGsATT9nkXi10+YTcfiZ6kW0BtJ06jr+Gja2r9p+dBc/P/2I1sDaxOv462LdALt8xmCsP6sQES1PtI1X8Wtj2SCJFTJEyzN94nX8b2jX51ObQ/kZ4Dui5aku8cppjZiJj5bXcl/RHdHyXHEj7LpRl/29oTduE4HKDX1f4BbRUsREwOr+vukAmIxTEaGKF9FSymTAisr+LVvh6YJYgWgFwFbAfECkcIxoBeZ4I9cWMSKFOkQrcGUR8CVkBApdEK0InYqF6aARJphGtPBF2eEl4YFPiBYAVYgWAFWIFgBViBYAVYgWAFWIFgBViBYAVYgWAFWIFgBViBYAVYgWAFWIFgBViBYAVYgWAFWIFgBViBYAVYgWTuICgPAN0QKgCtECoArRAqAK0QKgCtECoArRAqAK0QKgCtECoArRAqAK0QKgCtECoArRAqAK0QKgCtECoArRAqAK0QKgCtECoArRAqAK0QKgCtECoMr/AXujkJg3a6A0AAAAAElFTkSuQmCC" alt="" name="角度" width="226" height="215" align="left" border="0" hspace="12" />A的坐标(x,y),A' 坐标(x1,y1),B的坐标(0,0)。我们可以轻松的获取AB的长度,而且显而易见A' B长度等于AB。假设我们已知θ角的大小那么我们可以很快求出BC和A' C的长度。BC=A' B x cosθ,A' C=A' B x sinθ。

因为∠A' CB和∠DCE为直角(显然的结论),则∠A' CD +∠DCB =∠ECD +∠DCB=90度。

则∠A' CD=∠ECD,∠A' DC=∠CEB=90度,因此可以推断⊿CA' D ∽⊿CBE。由此可以退出的结论有:

BC/BE=A' C/A' D和BC/CE=A' C/CD

当然了DC和A' D都是未知量,需要我们求解,但是我们却可以通过求出C点坐标和E点坐标间接获得A' C和CD的长度。我们应该利用相似的知识求解C点坐标。

C点横坐标等于:((|AB| x cosθ) / |AB|) * x = x*cosθ

C点纵坐标等于:((|AB| x cosθ) / |AB|) * y = y*cosθ

则CE和BE的的长度都可以确定。

我们可以通过相⊿CA' D ∽⊿CBE得出:

AD = x * sinθ   DC = y * sinθ

那么接下来很容易就可以得出:

x1 = x*cosθ- y * sinθ y1 = y*cosθ + x * sinθ

则A' 的坐标为(x*cosθ- y * sinθ, y*cosθ + x * sinθ)

我们可以这样认为:对于任意点A(x,y),A非原点,绕原点旋转θ角后点的坐标为:(x*cosθ- y * sinθ, y*cosθ + x * sinθ)

接下来我们对这个结论进行一下简单的推广,对于任意两个不同的点A和B(对于求点绕另一个点旋转后的坐标时,A B重合显然没有太大意义),求A点绕B点旋转θ角度后的坐标,我们都可以将B点看做原点,对A和B进行平移变换,计算出的点坐标后,在其横纵坐标上分别加上原B点的横纵坐标,这个坐标就是A' 的坐标。

推广结论:对于任意两个不同点A和B,A绕B旋转θ角度后的坐标为:

(Δx*cosθ- Δy * sinθ+ xB, Δy*cosθ + Δx * sinθ+ yB )//结论

注:xB、yB为B点坐标。

结论的进一步推广:对于任意非零向量AB(零向量研究意义不大),对于点C进行旋转,我们只需求出点A和B对于点C旋转一定角度的坐标即可求出旋转后的向量A' B' ,因为向量旋转后仍然是一条有向线段。同理,对于任意二维平面上的多边形旋转也是如此。

以上是比较简单的,最后把结论记好就行了。上面是绕B点进行旋转的,所以Δx = xa - xb, Δy = ya - yb,如果绕A反过来就行了。

题目代码:

/*************************************************************************
> File Name: upc_2217.cpp
> Author: Howe_Young
> Mail: 1013410795@qq.com
> Created Time: 2015年04月29日 星期三 20时03分21秒
************************************************************************/ #include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm> using namespace std; int main()
{
int t;
double x1, y1, x2, y2;
scanf("%d", &t);
while (t--)
{
scanf("%lf %lf %lf %lf", &x1, &y1, &x2, &y2);
double x3, y3;
x3 = (x2 - x1) * 0.5 - (y2 - y1) * sqrt(3.0) / 2.0 + x1;
y3 = (y2 - y1) * 0.5 + (x2 - x1) * sqrt(3.0) / 2.0 + y1;
printf("(%.2f,%.2f)\n", x3, y3);
}
return ;
}
上一篇:shell脚本学习系列之一---入门


下一篇:qt qextserialport __imp_SetupDiGetDeviceRegistryPropertyW