输入一个 n
行 m
列的整数矩阵,再输入 q
个询问,每个询问包含四个整数 x1,y1,x2,y2
,表示一个子矩阵的左上角坐标和右下角坐标。
对于每个询问输出子矩阵中所有数的和。
输入格式
第一行包含三个整数 n,m,q
。
接下来 n
行,每行包含 m
个整数,表示整数矩阵。
接下来 q
行,每行包含四个整数 x1,y1,x2,y2
,表示一组询问。
输出格式
共 q
行,每行输出一个询问的结果。
数据范围
1≤n,m≤1000,
1≤q≤200000,
1≤x1≤x2≤n,
1≤y1≤y2≤m,
−1000≤矩阵内元素的值≤1000
输入样例:
3 4 3
1 7 2 4
3 6 2 8
2 1 2 3
1 1 2 2
2 1 3 4
1 3 3 4
输出样例:
17
27
21
#include<iostream>
using namespace std;
const int N=1010;
int n,m,q;
int a[N][N],s[N][N];
int main(){
scanf("%d%d%d",&n,&m,&q);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
scanf("%d",&a[i][j]);
s[i][j] = s[i][j - 1] + s[i - 1][j] - s[i - 1][j - 1] + a[i][j]; // 求前缀和
}
while(q--){
int x1,y1,x2,y2;
cin>>x1>>y1>>x2>>y2;
printf("%d\n",s[x2][y2]-s[x1-1][y2]-s[x2][y1-1]+s[x1-1][y1-1]); //子矩阵和
}
return 0;
}