外观数列是指具有以下特点的整数序列:
d, d1, d111, d113, d11231, d112213111, ...
它从不等于 1 的数字 d
开始,序列的第 n+1 项是对第 n 项的描述。比如第 2 项表示第 1 项有 1 个 d
,所以就是 d1
;第 2 项是 1 个 d
(对应 d1
)和 1 个 1(对应 11),所以第 3 项就是 d111
。又比如第 4 项是 d113
,其描述就是 1 个 d
,2 个 1,1 个 3,所以下一项就是 d11231
。当然这个定义对 d
= 1 也成立。本题要求你推算任意给定数字 d
的外观数列的第 N 项。
输入格式:
输入第一行给出 [0,9] 范围内的一个整数 d
、以及一个正整数 N(≤ 40),用空格分隔。
输出格式:
在一行中给出数字 d
的外观数列的第 N 项。
输入样例:
1 8
输出样例:
1123123111
#include<iostream> #include<string> using namespace std; int main(){ string s; int n; cin >> s >> n; while(--n){ string ans; int cnt = 0; char pre = s[0]; for(int i = 0; i < s.length(); i++){ if(s[i] == pre) cnt++; else{ ans += pre; ans += cnt + '0'; pre = s[i]; cnt = 1; } } if(cnt > 0) { ans += pre; ans += cnt + '0'; } s = ans; } cout << s; return 0; }