链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695
题意:在[a,b]中的x,在[c,d]中的y,求x与y的最大公约数为k的组合有多少。(a=1, a <= b <= 100000, c=1, c <= d <= 100000, 0 <= k <= 100000)
思路:由于x与y的最大公约数为k,所以xx=x/k与yy=y/k一定互质。要从a/k和b/k之中选择互质的数,枚举1~b/k,当选择的yy小于等于a/k时,能够选择的xx数为Euler(yy),当yy大于a/k时,就要用容斥原理来找到yy的质因数,在a/k范围内找到与yy互质的数。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <map>
#include <cstdlib>
#include <queue>
#include <stack>
#include <vector>
#include <ctype.h>
#include <algorithm>
#include <string>
#include <set>
#include <ctime>
#define PI acos(-1.0)
#define maxn 1<<20
#define INF 0x7fffffff
#define eps 1e-8
typedef long long LL;
typedef unsigned long long ULL;
using namespace std;
LL ans=0;
LL S=0;
LL sum2;
LL euler[100050];
void init()
{
memset(euler,0,sizeof(euler));
euler[1] = 1;
for(int i = 2; i <= 100000; i++)
if(!euler[i])
for(int j = i; j <= 100000; j += i)
{
if(!euler[j])
euler[j] = j;
euler[j] = euler[j]/i*(i-1);
}
}
void factor(int n,int a[maxn],int b[maxn],LL &tt)
{
int temp,i,now;
temp=(int)((double)sqrt(n)+1);
tt=0;
now=n;
for(i=2; i<=temp; i++)
{
if(now%i==0)
{
a[++tt]=i;
b[tt]=0;
while(now%i==0)
{
++b[tt];
now/=i;
}
}
}
if(now!=1)
{
a[++tt]=now;
b[tt]=1;
}
}
int dfs(int aa[],int pos,int res,int sum,int b,int tot)//res乘积,sum乘数的个数
{
if(pos+1<=tot)
dfs(aa,pos+1,res,sum,b,tot);
sum++;
res*=aa[pos];
if(sum%2)
sum2+=b/res;
else
sum2-=b/res;
if(pos+1<=tot)
dfs(aa,pos+1,res,sum,b,tot);
return 0;
}
int main()
{
int T,tt=0,aa[40],bb[40];
init();
while(~scanf("%d",&T))
{
tt=0;
while(T--)
{
tt++;
int a,b,c,d,k;
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
printf("Case %d: ",tt);
if(k==0)
{
printf("0\n");
continue;
}
if(d<b)
swap(b,d);
b/=k;
d/=k;
if(!b)
{
printf("0\n");
continue;
}
ans=0;
for(int i=1; i<=b; i++)
ans+=euler[i];
for(int i=b+1; i<=d; i++)
{
sum2=0;
factor(i,aa,bb,S);
dfs(aa,1,1,0,b,S);
ans+=b-sum2;
}
printf("%I64d\n",ans);
}
}
return 0;
}