解法:动态规划
状态转移方程为:dp[i][j] = min(dp[i-1][j],dp[i][j-1])+grid[i][j]
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int m = grid.size(), n = grid[0].size();
vector<vector<int>> dp(m, vector<int>(n));
dp[0][0] = grid[0][0];
for (int i = 1; i < n; ++i) {
dp[0][i] = dp[0][i - 1] + grid[0][i];
}
for (int i = 1; i < m; ++i) {
dp[i][0] = dp[i - 1][0] + grid[i][0];
}
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
}
}
return dp[m - 1][n - 1];
}
};