给一个图,某些点需要单独以某一种颜色的线连接到1点,问如何安排能够使得整个图颜色最多的一条路颜色最少。
显然,二分枚举然后加以颜色其实就是流量了,相当于对每条边限定一个当前二分的流量值,判断能否满流即可。
召唤代码君:
#include <iostream> #include <cstdio> #include <cstring> #define maxn 555 #define maxm 333333 using namespace std; const int inf=~0U>>2; int to[maxm],next[maxm],c[maxm],first[maxm],edge; int tag[maxn],d[maxn],TAG=520; int Q[maxn],bot,top; bool can[maxn]; int n,m,k,T,h,s,t,house,ans,boder; void addedge(int U,int V) { edge++; to[edge]=V,c[edge]=1,next[edge]=first[U],first[U]=edge; edge++; to[edge]=U,c[edge]=1,next[edge]=first[V],first[V]=edge; } void _input() { scanf("%d%d%d",&n,&m,&k); edge=-1; for (int i=0; i<=n; i++) first[i]=-1; s=1,t=0,house=k; while (k--) { scanf("%d",&h); addedge(h,t); } boder=edge; while (m--) { scanf("%d%d",&k,&h); addedge(k,h); } } bool bfs() { Q[bot=top=1]=t,d[t]=0,can[t]=false,tag[t]=++TAG; while(bot<=top) { int cur=Q[bot++]; for (int i=first[cur]; i!=-1; i=next[i]) { if (c[i^1]>0 && tag[to[i]]!=TAG) { tag[to[i]]=TAG,Q[++top]=to[i]; d[to[i]]=d[cur]+1,can[to[i]]=false; if (to[i]==s) return true; } } } return false; } int dfs(int cur,int num) { if (cur==t) return num; int tmp=num,k; for (int i=first[cur]; i!=-1; i=next[i]) if (c[i]>0 && d[to[i]]==d[cur]-1 && tag[to[i]]==TAG && !can[to[i]]) { k=dfs(to[i],min(num,c[i])); if (k) num-=k,c[i]-=k,c[i^1]+=k; if (num==0) break; } if (num) can[cur]=true; return tmp-num; } bool check(int x) { for (int i=0; i<=boder; i++) c[i]=1; for (int i=boder+1; i<=edge; i++) c[i]=x; for ( ans=0; bfs(); ) ans+=dfs(s,inf); return ans>=house; } int main() { scanf("%d",&T); while (T--) { _input(); int l=1,r=n,mid; while (l<r) { mid=(l+r)>>1; if (check(mid)) r=mid; else l=mid+1; } printf("%d\n",l); } return 0; }