题目描述
我们可以用这样的方式来表示一个十进制数: 将每个阿拉伯数字乘以一个以该数字所处位置的(值减1)为指数,以10为底数的幂之和的形式。例如:123可表示为 1*10^2+2*10^1+3*10^0这样的形式。
与之相似的,对二进制数来说,也可表示成每个二进制数码乘以一个以该数字所处位置的(值-1)为指数,以2为底数的幂之和的形式。一般说来,任何一个正整数R或一个负整数-R都可以被选来作为一个数制系统的基数。如果是以R或-R为基数,则需要用到的数码为 0,1,....R-1。例如,当R=7时,所需用到的数码是0,1,2,3,4,5和6,这与其是R或-R无关。如果作为基数的数绝对值超过10,则为了表示这些数码,通常使用英文字母来表示那些大于9的数码。例如对16进制数来说,用A表示10,用B表示11,用C表示12,用D表示13,用E表示14,用F表示15。
在负进制数中是用-R 作为基数,例如-15(十进制)相当于110001(-2进制),并且它可以被表示为2的幂级数的和数:
110001=1*(-2)5+1*(-2)4+0*(-2)3+0*(-2)2+0*(-2)1 +1*(-2)0
设计一个程序,读入一个十进制数和一个负进制数的基数, 并将此十进制数转换为此负进制下的数:-R∈{-2,-3,-4,...,-20}
输入输出格式
输入格式:
输入的每行有两个输入数据。
第一个是十进制数N(-32768<=N<=32767); 第二个是负进制数的基数-R。
输出格式:
结果显示在屏幕上,相对于输入,应输出此负进制数及其基数,若此基数超过10,则参照16进制的方式处理。
输入输出样例
30000 -2
30000=11011010101110000(base-2)
-20000 -2
-20000=1111011000100000(base-2)
28800 -16
28000=19180(base-16)
-25000 -16
-25000=7FB8(base-16)
说明
NOIp2000提高组第一题
模拟
辗转取余得出每一位的值,倒序输出即可。
负进制和正进制不一样的是,模负进制如果得到负数,要转化成正数(从高位借1来模),这里的处理办法是直接用base-res
/*by SilverN*/
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
int n,base;
int a[];
int main(){
cin>>n>>base;
int cnt=;
printf("%d=",n);
while(n){
int tmp=n%base;
if(tmp<)tmp=tmp-base;
n=(n-tmp)/base;
a[++cnt]=tmp;
}
for(int i=cnt;i;i--){
if(a[i]>=){
printf("%c",a[i]-+'A');
}
else printf("%d",a[i]);
}
printf("(base%d)\n",base);
return ;
}