一种货币就是一个点
一个“兑换点”就是图上两种货币之间的一个兑换方式,是双边,但A到B的汇率和手续费可能与B到A的汇率和手续费不同。
唯一值得注意的是权值,当拥有货币A的数量为V时,A到A的权值为K,即没有兑换
而A到B的权值为(V-Cab)*Rab
本题是“求最大路径”,之所以被归类为“求最小路径”是因为本题题恰恰与bellman-Ford算法的松弛条件相反,求的是能无限松弛的最大正权路径,但是依然能够利用bellman-Ford的思想去解题。
因此初始化dis(S)=V 而源点到其他点的距离(权值)初始化为无穷小(0),当s到其他某点的距离能不断变大时,说明存在最大路径;如果可以一直变大,说明存在正环。判断是否存在环路,用Bellman-Ford和spfa都可以。这里尝试下floyd算法
//#ifndef ONLINE_JUDGE
//#pragma warning(disable : 4996)
//#endif // !ONLINE_JUDGE
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
#define ms(a,b) memset(a,b,sizeof(a));
const int N = 100 + 10;
double map[105] = { 0 }, g1[105][105] = { 0 }, g2[101][101] = { 0 }, v;
int n, m, s;
int floyd()
{
int i, j, k;
double d[105];
for (i = 1; i <= n; i++)d[i] = map[i];
for (k = 1; k <= n; k++)
for (i = 1; i <= n; i++)
for (j = 1; j <= n; j++)
if ((map[i] - g2[i][j])*g1[i][j] > map[j])map[j] = (map[i] - g2[i][j])*g1[i][j];
for (i = 1; i <= n; i++)
if (d[i] < map[i])return 1;
return 0;
}
//////////////////////////Submain/////////////////////////
int main() {
#ifndef ONLINE_JUDGE
freopen("in,txt", "r", stdin);
freopen("out,txt", "w", stdout);
#endif // !ONLINE_JUDGE
//原来不要循环输入,搞得我WA无数次
cin >> n >> m >> s >> v;
int i, j, k;
for (i = 1; i <= m; i++)
{
int a, b;
double c, d, e, f;
cin >> a >> b >> c >> d >> e >> f;
g1[a][b] = c, g2[a][b] = d;
g1[b][a] = e, g2[b][a] = f;
}
map[s] = v;
floyd();
if (floyd())cout << "YES\n";
else cout << "NO\n";
#ifndef ONLINE_JUDGE
fclose(stdin);
fclose(stdout);
system("out.txt");
#endif // !ONLINE_JUDGE
return 0;
}
/////////////////////////End Sub//////////////////////////