参考文章:
https://www.cnblogs.com/gaoquanquan/p/9898624.html java——并查集 UnionFind (强推)
http://www.cnblogs.com/noKing/p/8018609.html#_label0 并查集(Java实现)
https://github.com/liuyubobobo/Play-with-Algorithms
温馨提示:
如果对于看不懂的代码,强烈建议拿出纸和笔,来画一画图,跟着代码走一遍,一遍走不通,过一会再捋一捋。如果实在是捋不顺,就找个师傅好好教教。
上面的几篇文章,有参考的实现代码,有并查集的原理,我这里就不废话,直接上代码,看原理,建议看视频,以及优质的博客。
并查集 Union Find 接口定义如下:
public interface UF {
int getSize();
boolean isConnected(int p, int q);
void unionElements(int p, int q);
}
并查集的实现,这里有6个版本,每一个版本,都有所改进,是逐步的改进,这点 波波老师 的视频做的非常的好,我就无耻的拿过来了,因为我也想不出更好的代码了,至少目前是这样┭┮﹏┭┮
第一版:
// 我们的第一版Union-Find
public class UnionFind1 implements UF {
private int[] id; // 我们的第一版Union-Find本质就是一个数组
public UnionFind1(int size) {
id = new int[size];
// 初始化, 每一个id[i]指向自己, 没有合并的元素
for (int i = 0; i < size; i++)
id[i] = i;
}
@Override
public int getSize(){
return id.length;
}
// 查找元素p所对应的集合编号
// O(1)复杂度
private int find(int p) {
if(p < 0 || p >= id.length)
throw new IllegalArgumentException("p is out of bound.");
return id[p];
}
// 查看元素p和元素q是否所属一个集合
// O(1)复杂度
@Override
public boolean isConnected(int p, int q) {
return find(p) == find(q);
}
// 合并元素p和元素q所属的集合
// O(n) 复杂度
@Override
public void unionElements(int p, int q) {
int pID = find(p);
int qID = find(q);
if (pID == qID)
return;
// 合并过程需要遍历一遍所有元素, 将两个元素的所属集合编号合并
for (int i = 0; i < id.length; i++)
if (id[i] == pID)
id[i] = qID;
}
}
第二版:
// 我们的第二版Union-Find
public class UnionFind2 implements UF {
// 我们的第二版Union-Find, 使用一个数组构建一棵指向父节点的树
// parent[i]表示第一个元素所指向的父节点
private int[] parent;
// 构造函数
public UnionFind2(int size){
parent = new int[size];
// 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合
for( int i = 0 ; i < size ; i ++ )
parent[i] = i;
}
@Override
public int getSize(){
return parent.length;
}
// 查找过程, 查找元素p所对应的集合编号
// O(h)复杂度, h为树的高度
private int find(int p){
if(p < 0 || p >= parent.length)
throw new IllegalArgumentException("p is out of bound.");
// 不断去查询自己的父亲节点, 直到到达根节点
// 根节点的特点: parent[p] == p
while(p != parent[p])
p = parent[p];
return p;
}
// 查看元素p和元素q是否所属一个集合
// O(h)复杂度, h为树的高度
@Override
public boolean isConnected( int p , int q ){
return find(p) == find(q);
}
// 合并元素p和元素q所属的集合
// O(h)复杂度, h为树的高度
@Override
public void unionElements(int p, int q){
int pRoot = find(p);
int qRoot = find(q);
if( pRoot == qRoot )
return;
parent[pRoot] = qRoot;
}
}
第三版:
// 我们的第三版Union-Find
public class UnionFind3 implements UF{
private int[] parent; // parent[i]表示第一个元素所指向的父节点
private int[] sz; // sz[i]表示以i为根的集合中元素个数
// 构造函数
public UnionFind3(int size){
parent = new int[size];
sz = new int[size];
// 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合
for(int i = 0 ; i < size ; i ++){
parent[i] = i;
sz[i] = 1;
}
}
@Override
public int getSize(){
return parent.length;
}
// 查找过程, 查找元素p所对应的集合编号
// O(h)复杂度, h为树的高度
private int find(int p){
if(p < 0 || p >= parent.length)
throw new IllegalArgumentException("p is out of bound.");
// 不断去查询自己的父亲节点, 直到到达根节点
// 根节点的特点: parent[p] == p
while( p != parent[p] )
p = parent[p];
return p;
}
// 查看元素p和元素q是否所属一个集合
// O(h)复杂度, h为树的高度
@Override
public boolean isConnected( int p , int q ){
return find(p) == find(q);
}
// 合并元素p和元素q所属的集合
// O(h)复杂度, h为树的高度
@Override
public void unionElements(int p, int q){
int pRoot = find(p);
int qRoot = find(q);
if(pRoot == qRoot)
return;
// 根据两个元素所在树的元素个数不同判断合并方向
// 将元素个数少的集合合并到元素个数多的集合上
if(sz[pRoot] < sz[qRoot]){
parent[pRoot] = qRoot;
sz[qRoot] += sz[pRoot];
}
else{ // sz[qRoot] <= sz[pRoot]
parent[qRoot] = pRoot;
sz[pRoot] += sz[qRoot];
}
}
}
第四版:
// 我们的第四版Union-Find
public class UnionFind4 implements UF {
private int[] rank; // rank[i]表示以i为根的集合所表示的树的层数
private int[] parent; // parent[i]表示第i个元素所指向的父节点
// 构造函数
public UnionFind4(int size){
rank = new int[size];
parent = new int[size];
// 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合
for( int i = 0 ; i < size ; i ++ ){
parent[i] = i;
rank[i] = 1;
}
}
@Override
public int getSize(){
return parent.length;
}
// 查找过程, 查找元素p所对应的集合编号
// O(h)复杂度, h为树的高度
private int find(int p){
if(p < 0 || p >= parent.length)
throw new IllegalArgumentException("p is out of bound.");
// 不断去查询自己的父亲节点, 直到到达根节点
// 根节点的特点: parent[p] == p
while(p != parent[p])
p = parent[p];
return p;
}
// 查看元素p和元素q是否所属一个集合
// O(h)复杂度, h为树的高度
@Override
public boolean isConnected( int p , int q ){
return find(p) == find(q);
}
// 合并元素p和元素q所属的集合
// O(h)复杂度, h为树的高度
@Override
public void unionElements(int p, int q){
int pRoot = find(p);
int qRoot = find(q);
if( pRoot == qRoot )
return;
// 根据两个元素所在树的rank不同判断合并方向
// 将rank低的集合合并到rank高的集合上
if(rank[pRoot] < rank[qRoot])
parent[pRoot] = qRoot;
else if(rank[qRoot] < rank[pRoot])
parent[qRoot] = pRoot;
else{ // rank[pRoot] == rank[qRoot]
parent[pRoot] = qRoot;
rank[qRoot] += 1; // 此时, 我维护rank的值
}
}
}
第五版:
// 我们的第五版Union-Find
public class UnionFind5 implements UF {
// rank[i]表示以i为根的集合所表示的树的层数
// 在后续的代码中, 我们并不会维护rank的语意, 也就是rank的值在路径压缩的过程中, 有可能不在是树的层数值
// 这也是我们的rank不叫height或者depth的原因, 他只是作为比较的一个标准
private int[] rank;
private int[] parent; // parent[i]表示第i个元素所指向的父节点
// 构造函数
public UnionFind5(int size){
rank = new int[size];
parent = new int[size];
// 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合
for( int i = 0 ; i < size ; i ++ ){
parent[i] = i;
rank[i] = 1;
}
}
@Override
public int getSize(){
return parent.length;
}
// 查找过程, 查找元素p所对应的集合编号
// O(h)复杂度, h为树的高度
private int find(int p){
if(p < 0 || p >= parent.length)
throw new IllegalArgumentException("p is out of bound.");
while( p != parent[p] ){
parent[p] = parent[parent[p]];
p = parent[p];
}
return p;
}
// 查看元素p和元素q是否所属一个集合
// O(h)复杂度, h为树的高度
@Override
public boolean isConnected( int p , int q ){
return find(p) == find(q);
}
// 合并元素p和元素q所属的集合
// O(h)复杂度, h为树的高度
@Override
public void unionElements(int p, int q){
int pRoot = find(p);
int qRoot = find(q);
if( pRoot == qRoot )
return;
// 根据两个元素所在树的rank不同判断合并方向
// 将rank低的集合合并到rank高的集合上
if( rank[pRoot] < rank[qRoot] )
parent[pRoot] = qRoot;
else if( rank[qRoot] < rank[pRoot])
parent[qRoot] = pRoot;
else{ // rank[pRoot] == rank[qRoot]
parent[pRoot] = qRoot;
rank[qRoot] += 1; // 此时, 我维护rank的值
}
}
}
第六版:
// 我们的第六版Union-Find
public class UnionFind6 implements UF {
// rank[i]表示以i为根的集合所表示的树的层数
// 在后续的代码中, 我们并不会维护rank的语意, 也就是rank的值在路径压缩的过程中, 有可能不在是树的层数值
// 这也是我们的rank不叫height或者depth的原因, 他只是作为比较的一个标准
private int[] rank;
private int[] parent; // parent[i]表示第i个元素所指向的父节点
// 构造函数
public UnionFind6(int size){
rank = new int[size];
parent = new int[size];
// 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合
for( int i = 0 ; i < size ; i ++ ){
parent[i] = i;
rank[i] = 1;
}
}
@Override
public int getSize(){
return parent.length;
}
// 查找过程, 查找元素p所对应的集合编号
// O(h)复杂度, h为树的高度
private int find(int p){
if(p < 0 || p >= parent.length)
throw new IllegalArgumentException("p is out of bound.");
// path compression 2, 递归算法
if(p != parent[p])
parent[p] = find(parent[p]);
return parent[p];
}
// 查看元素p和元素q是否所属一个集合
// O(h)复杂度, h为树的高度
@Override
public boolean isConnected( int p , int q ){
return find(p) == find(q);
}
// 合并元素p和元素q所属的集合
// O(h)复杂度, h为树的高度
@Override
public void unionElements(int p, int q){
int pRoot = find(p);
int qRoot = find(q);
if( pRoot == qRoot )
return;
// 根据两个元素所在树的rank不同判断合并方向
// 将rank低的集合合并到rank高的集合上
if( rank[pRoot] < rank[qRoot] )
parent[pRoot] = qRoot;
else if( rank[qRoot] < rank[pRoot])
parent[qRoot] = pRoot;
else{ // rank[pRoot] == rank[qRoot]
parent[pRoot] = qRoot;
rank[qRoot] += 1; // 此时, 我维护rank的值
}
}
}