机器学习:评价分类结果(F1 Score)

一、基础

  • 疑问1:具体使用算法时,怎么通过精准率和召回率判断算法优劣?
  • 根据具体使用场景而定:
  1. 例1:股票预测,未来该股票是升还是降?业务要求更精准的找到能够上升的股票;此情况下,模型精准率越高越优。
  2. 例2:病人诊断,就诊人员是否患病?业务要求更全面的找出所有患病的病人,而且尽量不漏掉一个患者;甚至说即使将正常人员判断为病人也没关系,只要不将病人判断成健康人员就好。此情况,模型召回率越高越优。
  • 疑问2::有些情况下,即需要考虑精准率又需要考虑召回率,二者所占权重一样,怎么中欧那个判断?
  • 方法:采用新的评价标准,F1 Score;

二、F1 Score

  • F1 Score:兼顾降准了和召回率,当急需要考虑精准率又需要考虑召回率,可查看模型的 F1 Score,根据 F1 Score 的大小判断模型的优劣;
  • F1 = 2 * Precision * recall / (precision + recall),是二者的调和平均值;
  • 机器学习:评价分类结果(F1 Score)
  1. F1 是 precision 和 recall 的调和平均值
  2. 调和平均值:如果 1/a = (1/b + 1/c) / 2,则称 a 是 b 和 c 的调和平均值;
  3. 调和平均值特点:|b - c| 越大,a 越小;当 b - c = 0 时,a = b = c,a 达到最大值;
  4. 具体到精准率和召回率,只有当二者大小均衡时,F1 指标才高,

三、F1 Score 的使用

  • F1 Score 指标在 scikit-learn 中封装在了 sklearn.metrics 模块下的 f1_score() 方法中
    from sklearn.metrics import f1_score
    
    f1_score(y_test, y_log_predict)
    # 0.8674698795180723
  • import numpy as np
    from sklearn import datasets digits = datasets.load_digits()
    X = digits.data
    y = digits.target.copy() y[digits.target==9] = 1
    y[digits.target!=9] = 0 from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=666) from sklearn.linear_model import LogisticRegression
    log_reg = LogisticRegression()
    log_reg.fit(X_train, y_train)
    y_log_predict = log_reg.predict(X_test) from sklearn.metrics import precision_score
    precision_score(y_test, y_log_predict)
    # 精准率:0.9473684210526315 from sklearn.metrics import recall_score
    recall_score(y_test, y_log_predict)
    # 召回率:0.8 from sklearn.metrics import f1_score
    f1_score(y_test, y_log_predict)
    # F1 Score 指标:0.8674698795180723
  • 使用scikit-learn 中 sklearn.metrics 模块下的 confusion_matrix()precision_score()recall_score()f1_score() 方法时,所需要的参数都是 y_testy_predict
上一篇:electron内监控目标网站cookie的变化,查找指定的cookie


下一篇:牛客网 --java问答题