python 注意事项

常见错误 #4:  不理解Python的作用域

Python是基于 LEGB 来进行作用于解析的, LEGB 是 Local, Enclosing, Global, Built-in 的缩写。看起来“见文知意”,对吗?实际上,在Python中还有一些需要注意的地方,先看下面一段代码:

>>> x = 10
>>> def foo():
...     x += 1
...     print x
...
>>> foo()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 2, in foo
UnboundLocalError: local variable 'x' referenced before assignment

这里出什么问题了?

上面的问题之所以会发生是因为当你给作用域中的一个变量赋值时,Python 会自动的把它当做是当前作用域的局部变量,从而会隐藏外部作用域中的同名变量。

很多人会感到很吃惊,当他们给之前可以正常运行的代码的函数体的某个地方添加了一句赋值语句之后就得到了一个 UnboundLocalError 的错误。  (你可以在这里了解到更多)

尤其是当开发者使用 lists 时,这个问题就更加常见.  请看下面这个例子:

>>> lst = [1, 2, 3]
>>> def foo1():
...     lst.append(5)   # 没有问题...
...
>>> foo1()
>>> lst
[1, 2, 3, 5]

>>> lst = [1, 2, 3]
>>> def foo2():
...     lst += [5]      # ... 但是这里有问题!
...
>>> foo2()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 2, in foo
UnboundLocalError: local variable 'lst' referenced before assignment

嗯?为什么 foo2 报错,而foo1没有问题呢?

原因和之前那个例子的一样,不过更加令人难以捉摸。foo1 没有对 lst 进行赋值操作,而 foo2 做了。要知道, lst += [5] 是 lst = lst + [5] 的缩写,我们试图对 lst 进行赋值操作(Python把他当成了局部变量)。此外,我们对 lst 进行的赋值操作是基于 lst 自身(这再一次被Python当成了局部变量),但此时还未定义。因此出错。

常见错误#5:当迭代时修改一个列表(List)

下面代码中的问题应该是相当明显的:

>>> odd = lambda x : bool(x % 2)
>>> numbers = [n for n in range(10)]
>>> for i in range(len(numbers)):
...     if odd(numbers):
...         del numbers  # BAD: Deleting item from a list while iterating over it
...
Traceback (most recent call last):
        File "<stdin>", line 2, in <module>
IndexError: list index out of range
当迭代的时候,从一个 列表 (List)或者数组中删除元素,对于任何有经验的开发者来说,这是一个众所周知的错误。尽管上面的例子非常明显,但是许多高级开发者在更复杂的代码中也并非是故意而为之的。

幸运的是,Python包含大量简洁优雅的编程范例,若使用得当,能大大简化和精炼代码。这样的好处是能得到更简化和更精简的代码,能更好的避免程序中出现当迭代时修改一个列表(List)这样的bug。一个这样的范例是递推式列表(list comprehensions)。而且,递推式列表(list comprehensions)针对这个问题是特别有用的,通过更改上文中的实现,得到一段极佳的代码:

>>> odd = lambda x : bool(x % 2)
>>> numbers = [n for n in range(10)]
>>> numbers[:] = [n for n in numbers if not odd(n)]  # ahh, the beauty of it all
>>> numbers
[0, 2, 4, 6, 8]
常见错误 #6: 不明白Python在闭包中是如何绑定变量的

看下面这个例子:

>>> def create_multipliers():
...     return [lambda x : i * x for i in range(5)]
>>> for multiplier in create_multipliers():
...     print multiplier(2)
...

你也许希望获得下面的输出结果:

0
2
4
6
8

但实际的结果却是:

8
8
8
8
8

惊讶吧!

这之所以会发生是由于Python中的“后期绑定”行为——闭包中用到的变量只有在函数被调用的时候才会被赋值。所以,在上面的代码中,任何时候,当返回的函数被调用时,Python会在该函数被调用时的作用域中查找 i 对应的值(这时,循环已经结束,所以 i 被赋上了最终的值——4)。

解决的方法有一点hack的味道:

>>> def create_multipliers():
...     return [lambda x, i=i : i * x for i in range(5)]
...
>>> for multiplier in create_multipliers():
...     print multiplier(2)
...
0
2
4
6
8

在这里,我们利用了默认参数来生成一个匿名的函数以便实现我们想要的结果。有人说这个方法很巧妙,有人说它难以理解,还有人讨厌这种做法。但是,如果你是一个 Python 开发者,理解这种行为很重要。

常见错误 #10: 误用__del__方法

假设你有一个名为 calledmod.py 的文件:

import foo

class Bar(object):
           ...
    def __del__(self):
        foo.cleanup(self.myhandle)

并且有一个名为 another_mod.py 的文件:

import mod
mybar = mod.Bar()

你会得到一个 AttributeError 的异常。

为什么呢?因为,正如这里所说,当解释器退出的时候,模块中的全局变量都被设置成了 None。所以,在上面这个例子中,当 __del__ 被调用时,foo 已经被设置成了None。

解决方法是使用 atexit.register() 代替。用这种方式,当你的程序结束执行时(意思是正常退出),你注册的处理程序会在解释器退出之前执行。

了解了这些,我们可以将上面 mod.py 的代码修改成下面的这样:

import foo
import atexit

def cleanup(handle):
    foo.cleanup(handle)

class Bar(object):
    def __init__(self):
        ...
        atexit.register(cleanup, self.myhandle)

这种实现方式提供了一个整洁并且可信赖的方法用来在程序退出之前做一些清理工作。很显然,它是由foo.cleanup 来决定对绑定在 self.myhandle 上对象做些什么处理工作的,但是这就是你想要的。

总结

Python是一门强大的并且很灵活的语言,它有很多机制和语言规范来显著的提高你的生产力。和其他任何一门语言或软件一样,如果对它能力的了解有限,这很可能会给你带来阻碍,而不是好处。正如一句谚语所说的那样 “knowing enough to be dangerous”(译者注:意思是自以为已经了解足够了,可以做某事了,但其实不是

上一篇:343. Integer Break -- Avota


下一篇:c++类定义代码的分离