最小二乘法 python实现

#-*-coding:UTF-8-*-
# Created on 2015年10月20日
# @author: hanahimi
import numpy as np
import random
import matplotlib.pyplot as plt def randData():
# 生成曲线上各个点
x = np.arange(-1,1,0.02)
y = [2*a+3 for a in x] # 直线
# y = [((a*a-1)*(a*a-1)*(a*a-1)+0.5)*np.sin(a*2) for a in x] # 曲线
xa = []; ya = []
# 对曲线上每个点进行随机偏移
for i in range(len(x)):
d = np.float(random.randint(90,120))/100
ya.append(y[i]*d)
xa.append(x[i]*d)
return xa,ya def hypfunc(x,A):
# 输入:x 横坐标数值, A 多项式系数 [a0,a1,...,an-1]
# 返回 y = hypfunc(x)
return np.sum(A[i]*(x**i) for i in range(len(A))) # 使用 θ = (X.T*X + λI)^-1 * X.T * y求解直线参数
# 该函数会在X的前面添加偏移位X0 = 1
def LS_line(X,Y, lam = 0.01):
X = np.array(X)
X = np.vstack((np.ones((len(X),)),X)) # 往上面添加X0
X = np.mat(X).T # (m,n)
Y = np.mat(Y).T # (m,1)
M, N = X.shape
I = np.eye(N, N) # 单位矩阵 theta = ((X.T * X + lam*I)**-1)*X.T*Y # 核心公式
theta = np.array(np.reshape(theta,len(theta)))[0]
return theta # 返回一个一维数组 # 使用随机梯度下降法求解最小二参数:
# alpha 迭代步长(固定步长),epslion 收敛标准
def LS_sgd(X,Y,alpha=0.1, epslion = 0.003):
X = [[1,xi] for xi in X] # 补上偏移量x0
N = len(X[0]) # X的维度
M = len(X) # 样本个数
theta = np.zeros((N,)) # 参数初始值
last_theta = np.zeros(theta.shape) times = 10000
while times > 0:
times -= 1
for i in range(M):
last_theta[:] = theta[:]
for j in range(N):
theta[j] -= alpha * (np.dot(theta,X[i])-Y[i])*X[i][j]
if np.sum((theta - last_theta)**2) <= epslion: # 当前后参数的变化小于一定程度时可以终止迭代
break
return theta # 根据输入值:X向量,即拟合阶数,计算对应的范德蒙矩阵
def vandermonde_matrix(X, Y, order=1):
# 根据数据点构造X,Y的 范德蒙德矩阵
m = len(Y)
matX = np.array([[np.sum([X[i]**(k2+k1) for i in range(m)])
for k2 in range(order+1)] for k1 in range(order+1)])
matY = np.array([np.sum([(X[i]**k)*Y[i] for i in range(m)])
for k in range(order+1)])
theta = np.linalg.solve(matX, matY)
return theta if __name__=="__main__":
pass
X, Y = randData()
theta = vandermonde_matrix(X, Y, order=1)
theta = LS_sgd(X,Y) # 画出数据点与拟合曲线
plt.figure()
plt.plot(X,Y,linestyle='',marker='.')
yhyp = [hypfunc(X[i],theta) for i in range(len(X))]
plt.plot(X, yhyp,linestyle='-')
plt.show()
上一篇:RemoteViews嵌入ListView复杂布局


下一篇:Android核心分析之十四Android GWES之输入系统