#include <pcl/ModelCoefficients.h> #include <pcl/point_types.h> #include <pcl/io/pcd_io.h> #include <pcl/filters/extract_indices.h> #include <pcl/filters/voxel_grid.h> #include <pcl/features/normal_3d.h> #include <pcl/kdtree/kdtree.h> #include <pcl/sample_consensus/method_types.h> #include <pcl/sample_consensus/model_types.h> #include <pcl/segmentation/sac_segmentation.h> #include <pcl/segmentation/extract_clusters.h> #include <pcl/visualization/pcl_visualizer.h> int main(int argc, char** argv) { // Read in the cloud data pcl::PCDReader reader; pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>), cloud_f(new pcl::PointCloud<pcl::PointXYZ>); reader.read("table_scene_lms400.pcd", *cloud); std::cout << "PointCloud before filtering has: " << cloud->points.size() << " data points." << std::endl; //* // 下采样滤波 pcl::VoxelGrid<pcl::PointXYZ> vg; pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZ>); vg.setInputCloud(cloud); vg.setLeafSize(0.01f, 0.01f, 0.01f); vg.filter(*cloud_filtered); std::cout << "PointCloud after filtering has: " << cloud_filtered->points.size() << " data points." << std::endl; //* //创建分割对象和参数 pcl::SACSegmentation<pcl::PointXYZ> seg; pcl::PointIndices::Ptr inliers(new pcl::PointIndices); pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_plane(new pcl::PointCloud<pcl::PointXYZ>()); pcl::PCDWriter writer; seg.setOptimizeCoefficients(true); seg.setModelType(pcl::SACMODEL_PLANE); seg.setMethodType(pcl::SAC_RANSAC); seg.setMaxIterations(100); seg.setDistanceThreshold(0.02); int i = 0, nr_points = (int)cloud_filtered->points.size(); while (cloud_filtered->points.size() > 0.3 * nr_points) { // Segment the largest planar component from the remaining cloud seg.setInputCloud(cloud_filtered); seg.segment(*inliers, *coefficients); //提取点 pcl::ExtractIndices<pcl::PointXYZ> extract; extract.setInputCloud(cloud_filtered); extract.setIndices(inliers); extract.setNegative(false); // 提取的平面上的点保存到cloud_plane extract.filter(*cloud_plane); std::cout <<cloud_plane->points.size() <<std::endl; // Remove the planar inliers, extract the rest extract.setNegative(true); extract.filter(*cloud_f); cloud_filtered = cloud_f; } //创建一个Kd树对象作为提取点云时所用的方法, pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>); tree->setInputCloud(cloud_filtered); std::vector<pcl::PointIndices> cluster_indices; pcl ::EuclideanClusterExtraction<pcl::PointXYZ> ec;//聚类 ec.setClusterTolerance(0.02); //设置近邻搜索的搜索半径为2cm ec.setMinClusterSize(100); //设置一个聚类需要的最少点数目为100 ec.setMaxClusterSize(25000); //设置一个聚类需要的最大点数目为25000 ec.setSearchMethod(tree); //设置点云的搜索机制 ec.setInputCloud(cloud_filtered); //设置原始点云 ec.extract(cluster_indices); //从点云中提取聚类 // 可视化部分 pcl::visualization::PCLVisualizer viewer("segmention"); int j = 0; for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin(); it != cluster_indices.end(); ++it) { pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster(new pcl::PointCloud<pcl::PointXYZ>); for (std::vector<int>::const_iterator pit = it->indices.begin(); pit != it->indices.end(); pit++) cloud_cluster->points.push_back(cloud_filtered->points[*pit]); //* cloud_cluster->width = cloud_cluster->points.size(); cloud_cluster->height = 1; cloud_cluster->is_dense = true; std::cout << "PointCloud representing the Cluster: " << cloud_cluster->points.size() << " data points." << std::endl; std::stringstream ss; ss << "cloud_cluster_" << j << ".pcd"; int v2(0); pcl::visualization::PointCloudColorHandlerRandom<pcl::PointXYZ> cloud_in_color_h(cloud);//赋予显示点云的颜色,随机 viewer.addPointCloud(cloud_cluster, cloud_in_color_h, std::to_string(j)); j++; } //等待直到可视化窗口关闭。 while (!viewer.wasStopped()) { viewer.spinOnce(100);//刷新屏幕显示一次,100为允许重新渲染一次的最大时间ms数。 boost::this_thread::sleep(boost::posix_time::microseconds(100000)); } return (0); }