随机点云包括均匀分布和高斯分布,并且可以设置对应的参数。
代码如下:
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/common/generate.h>
#include <pcl/common/random.h>
#include <pcl/console/print.h>
#include <pcl/console/parse.h>
#include <pcl/console/time.h>
using namespace std;
using namespace pcl;
using namespace pcl::io;
using namespace pcl::common;
using namespace pcl::console;
typedef PointXYZ PointType;
typedef PointCloud<PointXYZ> Cloud;
typedef const Cloud::ConstPtr ConstCloudPtr;
std::string default_distribution = "uniform";
float default_xmin = 0.0f;
float default_xmax = 1.0f;
float default_xmean = 0.0f;
float default_xstddev = 1.0f;
float default_ymin = 0.0f;
float default_ymax = 1.0f;
float default_ymean = 0.0f;
float default_ystddev = 1.0f;
float default_zmin = 0.0f;
float default_zmax = 1.0f;
float default_zmean = 0.0f;
float default_zstddev = 1.0f;
int default_size = 10000;
void
printHelp (int, char **argv)
{
print_error ("Syntax is: %s output.pcd <options>\n", argv[0]);
print_info (" where options are:\n");
print_info (" -distribution X = the distribution to be used (options: uniform / normal) (default: ");
print_value ("%s", default_distribution.c_str ()); print_info (")\n");
print_info (" -size X = number of points in cloud (default: ");
print_value ("%d", default_size); print_info (")\n");
print_info (" Options for uniform distribution:\n");
print_info (" -[x|y|z]min X = minimum for the [x|y|z] dimension (defaults: ");
print_value ("%f, %f, %f", default_xmin, default_ymin, default_zmin); print_info (")\n");
print_info (" -[x|y|z]max X = maximum for the [x|y|z] dimension (defaults: ");
print_value ("%f, %f, %f", default_xmax, default_ymax, default_zmax); print_info (")\n");
print_info (" Options for normal distribution:\n");
print_info (" -[x|y|z]mean X = mean for the [x|y|z] dimension (defaults: ");
print_value ("%f, %f, %f", default_xmean, default_ymean, default_zmean); print_info (")\n");
print_info (" -[x|y|z]stddev X = standard deviation for the [x|y|z] dimension (defaults: ");
print_value ("%f, %f, %f", default_xstddev, default_ystddev, default_zstddev); print_info (")\n");
}
void
saveCloud (const std::string &filename, const Cloud &output)
{
TicToc tt;
tt.tic ();
print_highlight ("Saving "); print_value ("%s ", filename.c_str ());
PCDWriter w;
w.writeBinaryCompressed (filename, output);
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", output.width * output.height); print_info (" points]\n");
}
/* ---[ */
int
main (int argc, char** argv)
{
if (find_switch (argc, argv, "-h"))
{
printHelp (argc, argv);
return (0);
}
print_info ("Generate a random point cloud. For more information, use: %s -h\n", argv[0]);
if (argc < 2)
{
printHelp (argc, argv);
return (-1);
}
// Command line parsing
std::string distribution = default_distribution;
float xmin = default_xmin;
float xmax = default_xmax;
float xmean = default_xmean;
float xstddev = default_xstddev;
float ymin = default_ymin;
float ymax = default_ymax;
float ymean = default_ymean;
float ystddev = default_ystddev;
float zmin = default_zmin;
float zmax = default_zmax;
float zmean = default_zmean;
float zstddev = default_zstddev;
int size = default_size;
parse_argument (argc, argv, "-distribution", distribution);
parse_argument (argc, argv, "-xmin", xmin);
parse_argument (argc, argv, "-xmax", xmax);
parse_argument (argc, argv, "-xmean", xmean);
parse_argument (argc, argv, "-xstddev", xstddev);
parse_argument (argc, argv, "-ymin", ymin);
parse_argument (argc, argv, "-ymax", ymax);
parse_argument (argc, argv, "-ymean", ymean);
parse_argument (argc, argv, "-ystddev", ystddev);
parse_argument (argc, argv, "-zmin", zmin);
parse_argument (argc, argv, "-zmax", zmax);
parse_argument (argc, argv, "-zmean", zmean);
parse_argument (argc, argv, "-zstddev", zstddev);
parse_argument (argc, argv, "-size", size);
// Parse the command line arguments for .pcd files
std::vector<int> p_file_indices;
p_file_indices = parse_file_extension_argument (argc, argv, ".pcd");
if (p_file_indices.size () != 1)
{
print_error ("Need one output PCD file to continue.\n");
return (-1);
}
// Perform the feature estimation
Cloud output;
// Estimate
TicToc tt;
tt.tic ();
print_highlight (stderr, "Computing ");
if (distribution == "uniform")
{
CloudGenerator<pcl::PointXYZ, UniformGenerator<float> > generator;
uint32_t seed = static_cast<uint32_t> (time (NULL));
UniformGenerator<float>::Parameters x_params (xmin, xmax, seed++);
generator.setParametersForX (x_params);
UniformGenerator<float>::Parameters y_params (ymin, ymax, seed++);
generator.setParametersForY (y_params);
UniformGenerator<float>::Parameters z_params (zmin, zmax, seed++);
generator.setParametersForZ (z_params);
generator.fill (size, 1, output);
}
else if (distribution == "normal")
{
CloudGenerator<pcl::PointXYZ, NormalGenerator<float> > generator;
uint32_t seed = static_cast<uint32_t> (time (NULL));
NormalGenerator<float>::Parameters x_params (xmean, xstddev, seed++);
generator.setParametersForX (x_params);
NormalGenerator<float>::Parameters y_params (ymean, ystddev, seed++);
generator.setParametersForY (y_params);
NormalGenerator<float>::Parameters z_params (zmean, zstddev, seed++);
generator.setParametersForZ (z_params);
generator.fill (size, 1, output);
}
else
{
PCL_ERROR ("%s is not a valid generator! Quitting!\n", distribution.c_str ());
return (0);
}
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", output.width * output.height); print_info (" points]\n");
// Save into the second file
saveCloud (argv[p_file_indices[0]], output);
}
来源:PCL官方示例