题意
题目描述
- 给定\(n\)个物品,给定每个物品的 重量 \(w_i\) 和 价值 \(v_i\)
- 给定一个标准值 \(s\) 以及一个参数 \(w\)
- 质检员每次会抽取\(m\)个区间,每次的抽检结果为 \(y = \sum_{l_i}^{r_i} (w_i \ge w) · \sum_{l_i}^{r_i} v_i\)
- 求出 \(\min{\mid{y - s}\mid}\)
数据范围
\(1 \le n,m \le 2^5\), \(0 < w_i, v_i \le 10^6\) \(0 < s \le 10^12\), \(1 \le l_i \le r_i \le n\)
SOLUTION
当 \(y > s\) 的时候, \(y - s > 0\) 当 \(y < s\) 的时候, \(y - s < 0\) 我们想让 \(y\) 尽可能的逼近 \(s\) 对于参数\(w\),当\(w\)越大,\(y\)越小
因此本题具有单调性。 考虑二分\(w\) 使得 \(y\) 尽可能的逼近\(s\) 即可
AC_CODE
#include <bits/stdc++.h>
#define LL long long
using namespace std;
const int N = 2e5 + 10;
int n, m, l = INF, r = -INF;
LL s; // 不开 long long 见祖宗 | =^_^= |
int L[N], R[N];
int w[N], v[N];
LL p1[N], p2[N];
LL chk(int x) {
for(int i = 1; i <= n; i ++ ) {
p1[i] = p1[i - 1]; p2[i] = p2[i - 1];
if(w[i] >= x) {
p1[i] += v[i];
p2[i] ++;
}
}
// printf("\n%d\n", x);
LL ANS = 0;
rep(i, 1, m) {
// printf("> %d %d %lld %lld\n",L[i], R[i], (p1[R[i]] - p1[L[i] - 1]) , (p2[R[i]] - p2[L[i] - 1]));
ANS += (p1[R[i]] - p1[L[i] - 1]) * (p2[R[i]] - p2[L[i] - 1]);
}
return ANS;
}
inline void solve() {
read(n); read(m); read(s);
rep(i, 1, n) {
read(w[i]); read(v[i]);
l = min(l, w[i]); r = max(r, w[i]);
}
rep(i, 1, m) {
read(L[i]); read(R[i]);
}
l --, r ++;
LL ans = INFF;
while(l <= r) { // 由于 l = mid + 1, r = mid - 1 因此while循环里面的条件应该是 l <= r
int mid = l + r >> 1;
LL res = chk(mid);
if(res >= s) l = mid + 1; // 如果结果 y > s 我们就让 w 大一点 这样 y就会小一点更逼近 s
else r = mid - 1; //同理
ans = min(ans, abs(res - s));
// printf("> %d %lld\n", mid, res);
}
printf("%lld\n", ans);
}
signed main()
{
// freopen("in.txt", "r", stdin);
solve();
return 0;
}