线性筛(欧拉筛)
void init() {
phi[1] = 1;
for (int i = 2; i < MAXN; ++i) {
if (!vis[i]) {
phi[i] = i - 1;
pri[cnt++] = i;
}
for (int j = 0; j < cnt; ++j) {
if (1ll * i * pri[j] >= MAXN) break;
vis[i * pri[j]] = 1;
if (i % pri[j]) {
phi[i * pri[j]] = phi[i] * (pri[j] - 1);
} else {
// i % pri[j] == 0
// 换言之,i 之前被 pri[j] 筛过了
// 由于 pri 里面质数是从小到大的,所以 i 乘上其他的质数的结果一定也是
// pri[j] 的倍数 它们都被筛过了,就不需要再筛了,所以这里直接 break
// 掉就好了
phi[i * pri[j]] = phi[i] * pri[j];
break;
}
}
}
}
注意到筛法求素数的同时也得到了每个数的最小质因子
筛法求欧拉函数
void phi_table(int n, int* phi) {
for (int i = 2; i <= n; i++) phi[i] = 0;
phi[1] = 1;
for (int i = 2; i <= n; i++)
if (!phi[i])
for (int j = i; j <= n; j += i) {
if (!phi[j]) phi[j] = j;
phi[j] = phi[j] / i * (i - 1);
}
}
筛法求莫比乌斯函数
void pre() {
mu[1] = 1;
for (int i = 2; i <= 1e7; ++i) {
if (!v[i]) mu[i] = -1, p[++tot] = i;
for (int j = 1; j <= tot && i <= 1e7 / p[j]; ++j) {
v[i * p[j]] = 1;
if (i % p[j] == 0) {
mu[i * p[j]] = 0;
break;
}
mu[i * p[j]] = -mu[i];
}
}
筛法求约数个数
void pre() {
d[1] = 1;
for (int i = 2; i <= n; ++i) {
if (!v[i]) v[i] = 1, p[++tot] = i, d[i] = 2, num[i] = 1;
for (int j = 1; j <= tot && i <= n / p[j]; ++j) {
v[p[j] * i] = 1;
if (i % p[j] == 0) {
num[i * p[j]] = num[i] + 1;
d[i * p[j]] = d[i] / num[i * p[j]] * (num[i * p[j]] + 1);
break;
} else {
num[i * p[j]] = 1;
d[i * p[j]] = d[i] * 2;
}
}
}
}
## 筛法求约数和
void pre() {
g[1] = f[1] = 1;
for (int i = 2; i <= n; ++i) {
if (!v[i]) v[i] = 1, p[++tot] = i, g[i] = i + 1, f[i] = i + 1;
for (int j = 1; j <= tot && i <= n / p[j]; ++j) {
v[p[j] * i] = 1;
if (i % p[j] == 0) {
g[i * p[j]] = g[i] * p[j] + 1;
f[i * p[j]] = f[i] / g[i] * g[i * p[j]];
break;
} else {
f[i * p[j]] = f[i] * f[p[j]];
g[i * p[j]] = 1 + p[j];
}
}
}
for (int i = 1; i <= n; ++i) f[i] = (f[i - 1] + f[i]) % Mod;
}