ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测值VS真实值

ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测值VS真实值

 

 

 

目录

模型评估

输出结果


 

 

 

模型评估

相关文章:ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车系统参数(2017年的data,18+2)进行回归预测+评估八种模型性能

 

输出结果

1、13.0环境下

1.1、输出预测值

ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测值VS真实值

ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测值VS真实值ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测值VS真实值ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测值VS真实值ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测值VS真实值ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测值VS真实值

 

 

1.2、模型性能评估及输出预测值

各个模型结果

LiR LiR:The value of default measurement of LiR is 0.4125342966025278
LiR:R-squared value of DecisionTreeRegressor: 0.41253429660252783
LiR:The mean squared error of DecisionTreeRegressor: 5.687204916076843
LiR:The mean absoluate error of DecisionTreeRegressor: 1.688779184910588
LiR:测试1131~1138行数据, 
 [[0.39260249]
 [0.56158086]
 [0.66445704]
 [0.75795626]
 [0.83294215]
 [0.84325901]]
 
SVM

linear_SVR:The value of default measurement of linear_SVR is 0.5024128304336872
linear_SVR:R-squared value of DecisionTreeRegressor: 0.5024128304336872
linear_SVR:The mean squared error of DecisionTreeRegressor: 4.817098565189997
linear_SVR:The mean absoluate error of DecisionTreeRegressor: 1.4822824851546261
linear_SVR:测试1131~1138行数据, 
 [0.68489265 0.8230609  0.88380302 0.95656835 0.98611563 1.02264102]


poly_SVR:The value of default measurement of poly_SVR is 0.5371358572097877
poly_SVR:R-squared value of DecisionTreeRegressor: 0.5371358572097877
poly_SVR:The mean squared error of DecisionTreeRegressor: 4.4809479313061065
poly_SVR:The mean absoluate error of DecisionTreeRegressor: 1.1042932962440708
poly_SVR:测试1131~1138行数据, 
 [0.74006387 0.99232855 1.02709907 1.04999397 1.01658734 0.99276056]


rbf_SVR:The value of default measurement of rbf_SVR is 0.7419598320911289
rbf_SVR:R-squared value of DecisionTreeRegressor: 0.7419598320911289
rbf_SVR:The mean squared error of DecisionTreeRegressor: 2.4980646580549646
rbf_SVR:The mean absoluate error of DecisionTreeRegressor: 1.0023906945802386
rbf_SVR:测试1131~1138行数据, 
 [0.87034053 0.94602667 0.9724284  1.01138968 1.00514582 1.03902654]

 
DT DTR:The value of default measurement of DTR is -0.034791814149233824
DTR:R-squared value of DecisionTreeRegressor: -0.034791814149233824
DTR:The mean squared error of DecisionTreeRegressor: 10.0177304964539
DTR:The mean absoluate error of DecisionTreeRegressor: 1.4078014184397163
DTR:测试1131~1138行数据, 
 [1.44129906 1.1913833  1.1913833  1.1913833  1.1913833  0.94146754]
 
RF RFR:The value of default measurement of RFR is 0.7143901333350653
RFR:R-squared value of DecisionTreeRegressor: 0.7143901333350653
RFR:The mean squared error of DecisionTreeRegressor: 2.7649645390070923
RFR:The mean absoluate error of DecisionTreeRegressor: 1.0191489361702128
RFR:测试1131~1138行数据, 
 
ETR ETR:The value of default measurement of ETR is 0.7895434913913477
ETR:R-squared value of DecisionTreeRegressor: 0.7895434913913478
ETR:The mean squared error of DecisionTreeRegressor: 2.0374113475177302
ETR:The mean absoluate error of DecisionTreeRegressor: 0.9790780141843972
ETR:测试1131~1138行数据, 
 [1.29134961 1.01644227 1.04143384 1.16639172 1.14140015 1.09141699]
 
GB/GD

SGDR:The value of default measurement of SGDR is 0.28663918777885733
SGDR:R-squared value of DecisionTreeRegressor: 0.28663918777885733
SGDR:The mean squared error of DecisionTreeRegressor: 6.905984629805215
SGDR:The mean absoluate error of DecisionTreeRegressor: 1.8298880068703798
SGDR:测试1131~1138行数据, 
 [0.72109893 0.74773439 0.75200051 0.74284389 0.74950052 0.71633365]


GBR:The value of default measurement of GBR is 0.33837779185765615
GBR:R-squared value of DecisionTreeRegressor: 0.33837779185765615
GBR:The mean squared error of DecisionTreeRegressor: 6.405107656449695
GBR:The mean absoluate error of DecisionTreeRegressor: 1.0884549292443049
GBR:测试1131~1138行数据, 
 [1.26085339 1.24070607 1.17201814 1.20110767 1.23182112 1.24516423]

 
LGB

[LightGBM] [Warning] feature_fraction is set=0.6, colsample_bytree=1.0 will be ignored. Current value: feature_fraction=0.6
[LightGBM] [Warning] min_data_in_leaf is set=18, min_child_samples=20 will be ignored. Current value: min_data_in_leaf=18
[LightGBM] [Warning] min_sum_hessian_in_leaf is set=0.001, min_child_weight=0.001 will be ignored. Current value: min_sum_hessian_in_leaf=0.001
[LightGBM] [Warning] bagging_fraction is set=0.7, subsample=1.0 will be ignored. Current value: bagging_fraction=0.7


LGB:The value of default measurement of LGB is 0.7889733551704177
LGB:R-squared value of DecisionTreeRegressor: 0.7889733551704177
LGB:The mean squared error of DecisionTreeRegressor: 2.042930787205453
LGB:The mean absoluate error of DecisionTreeRegressor: 1.0168020659984283
LGB:测试1131~1138行数据, 
 [1.3993656  0.91062936 1.22062928 1.34866033 1.06943559 1.11018125]

 

 

2、在【12.9,13.0】环境下

2.1、 输出预测值

ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测值VS真实值ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测值VS真实值ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测值VS真实值ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测值VS真实值ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测值VS真实值ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测值VS真实值

3、在【12.8,13.0】环境下

3.1、 输出预测值

ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测值VS真实值ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测值VS真实值

ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测值VS真实值ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测值VS真实值ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测值VS真实值ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测值VS真实值

 

 

 

 

 

 

 

 

上一篇:ML/DL:关于机器学习、深度学习算法模型的选择


下一篇:旅行商问题【山财新生赛E】