K的因子中只包含2 3 5。满足条件的前10个数是:2,3,4,5,6,8,9,10,12,15。
所有这样的K组成了一个序列S,现在给出一个数n,求S中 >= 给定数的最小的数。
例如:n = 13,S中 >= 13的最小的数是15,所以输出15。
Input
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 10000)
第2 - T + 1行:每行1个数N(1 <= N <= 10^18)
Output
共T行,每行1个数,输出>= n的最小的只包含因子2 3 5的数。
Input示例
5
1
8
13
35
77
Output示例
2
8
15
36
80
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
#include <stack>
#include <cstdlib>
#include <iomanip>
#include <cmath>
#include <cassert>
#include <ctime>
#include <map>
#include <set>
using namespace std;
#pragma comment(linker, "/stck:1024000000,1024000000")
#define lowbit(x) (x&(-x))
#define max(x,y) (x>=y?x:y)
#define min(x,y) (x<=y?x:y)
#define MAX 100000000000000000
#define MOD 1000000007
#define pi acos(-1.0)
#define ei exp(1)
#define PI 3.1415926535897932384626433832
#define ios() ios::sync_with_stdio(true)
#define INF 0x3f3f3f3f
#define mem(a) ((a,0,sizeof(a)))
typedef long long ll;
#define maxn 1e18
ll dp[],n,t,top=;
int main()
{
for(ll i=;i<=maxn;i*=)
{
for(ll j=;j*i<=maxn;j*=)
{
for(ll k=;k*i*j<=maxn;k*=)
{
dp[top++]=i*j*k;
}
}
}
sort(dp,dp+top);
scanf("%lld",&t);
while(t--)
{
scanf("%lld",&n);
printf("%lld\n", *lower_bound(dp+,dp+top,n));
}
return ;
}