CNN 使用小卷积核而非大卷积的好处

大尺寸的卷积核可以带来更大的感受野,但也意味着更多的参数,并且《Rethinking the Inception Architecture for Computer Vision》的作者提出可以用 $2$ 个连续的 $3\times3$ 卷积层( stride=1)组成的小网络来代替单个的 $5\times 5$卷积层可以保持感受野范围的同时又减少了参数量:

卷积核设置 参数个数
一个 $5\times 5$ $5\times 5+1=26$
两个级联的 $3\times 3$ $(3\times 3+1)\times 2=20$

由于参数个数仅与卷积核大小有关,所以 $3\times 3$ 级联卷积核占优势,并且用 $2$ 个级联的 $3\times3$ 卷积层( stride=1)组成的小网络来代替单个的 $5\times 5$卷积层增加了非线性变换的操作使得模型的泛化能力进一步的提高。

  • 两个 $3\times 3$ 的堆叠卷基层的有限感受野是 $5\times 5$ ;三个 $3\times 3$ 的堆叠卷基层的感受野是 $7\times 7$,故可以通过小尺寸卷积层的堆叠替代大尺寸卷积层,并且感受野大小不变。
  • 多个 $3\times 3$ 的卷基层比一个大尺寸卷积层有更多的非线性(更多层的非线性函数),使得判决函数更加具有判决性,并且起到隐式正则化的作用。
  • $1\times 1$ 卷积核除了具有降低参数量和增加非线性的作用外,还可以起到对通道数的升降进行控制的作用 (达到特征降维和升维的作用)。
上一篇:高效 NMS


下一篇:一个递归计算与时间复杂度分析的例子