QueryDSL
简介
- QueryDSL仅仅是一个通用的查询框架,专注于通过Java API构建类型安全的SQL查询。
- Querydsl可以通过一组通用的查询API为用户构建出适合不同类型ORM框架或者是SQL的查询语句,也就是说QueryDSL是基于各种ORM框架以及SQL之上的一个通用的查询框架。
- 借助QueryDSL可以在任何支持的ORM框架或者SQL平台上以一种通用的API方式来构建查询。目前QueryDSL支持的平台包括JPA,JDO,SQL,Java Collections,Mongodb,Lucene
- 官网地址:点击进入
- github地址:点击进入
p6spy
优点
-
记录SQL语句的执行时间戳
-
记录SQL语句类型
-
记录SQL填入参数的和没有填入参数的SQL语句
-
根据配置的时间控制SQL语句的执行时间,对超出时间的SQL语句输出到日志文件中
原理
P6Spy
通过劫持JDBC
驱动,在调用实际JDBC
驱动前拦截调用的目标语,达到SQL
语句日志记录的目的
应用
- 替换你的
JDBC Driver
为com.p6spy.engine.spy.P6SpyDriver
- 修改
JDBC Url
为jdbc:p6spy:xxxx
- 配置
spy.properties
- 添加自定义日志打印类
配置到项目
1、引入querydsl
-
导包,不需要携带版本号,springboot已经集成
<!--query dsl--> <dependency> <groupId>com.querydsl</groupId> <artifactId>querydsl-jpa</artifactId> </dependency> <dependency> <groupId>com.querydsl</groupId> <artifactId>querydsl-apt</artifactId> <scope>provided</scope> </dependency> <!--query dsl end--> <!-- jpa --> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-jpa</artifactId> </dependency> <!-- jpa end --> <!-- sql打印 --> <dependency> <groupId>p6spy</groupId> <artifactId>p6spy</artifactId> <version>3.8.5</version> </dependency> <!-- sql打印 end -->
-
加入插件,让程序自动生成query type(查询实体,命名方式为:“Q”+对应实体名)。
<!--该插件可以生成querysdl需要的查询对象,执行mvn compile即可--> <plugin> <groupId>com.mysema.maven</groupId> <artifactId>apt-maven-plugin</artifactId> <version>1.1.3</version> <executions> <execution> <goals> <goal>process</goal> </goals> <configuration> <outputDirectory>target/generated-sources/java</outputDirectory> <processor>com.querydsl.apt.jpa.JPAAnnotationProcessor</processor> </configuration> </execution> </executions> </plugin>
执行mvn compile之后,会将带有
@Entity
注解的实体类在指定路径target/generated-sources/java
下生成一个衍生的实体类,我们后面就是用这个衍生出来的实体类去构建动态查询的条件进行动态查询。 -
注入bean
import com.querydsl.jpa.impl.JPAQueryFactory; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import javax.persistence.EntityManager; /** * @auther YangFan * @Date 2021/3/25 9:14 */ @Configuration public class JPAFactory { @Bean public JPAQueryFactory jpaQueryFactory(EntityManager entityManager) { return new JPAQueryFactory(entityManager); } }
2、配置文件
-
application.yml
使用
p6spy
我们可以直接查看到数据库执行的sql而不是预编译带?的SQL修改数据库连接驱动和url
spring: datasource: driver-class-name: com.p6spy.engine.spy.P6SpyDriver url: jdbc:p6spy:mysql://localhost:3306/ly_test?useUnicode=true&characterEncoding=utf8&useSSL=false&useLegacyDatetimeCode=false&serverTimezone=UTC&createDatabaseIfNotExist=true&useJDBCCompliantTimezoneShift=true&allowPublicKeyRetrieval=true username: root password: admin jpa: show-sql: false hibernate: ddl-auto: update
spring.jpa.hibernate.ddl-auto
的几个常用属性值:none:默认值,什么都不做,每次启动项目,不会对数据库进行任何验证和操作
create:每次运行项目,没有表会新建表,如果表内有数据会被清空
create-drop:每次程序结束的时候会清空表
update:每次运行程序,没有表会新建表,但是表内有数据不会被清空,只会更新表结构
validate:运行程序会校验数据与数据库的字段类型是否相同,不同会报错
-
spy.properties
driverlist=com.mysql.cj.jdbc.Driver # determines if property file should be reloaded # Please note: reload means forgetting all the previously set # settings (even those set during runtime - via JMX) # and starting with the clean table # (default is false) #reloadproperties=false reloadproperties=true # specifies the appender to use for logging # Please note: reload means forgetting all the previously set # settings (even those set during runtime - via JMX) # and starting with the clean table # (only the properties read from the configuration file) # (default is com.p6spy.engine.spy.appender.FileLogger) #appender=com.p6spy.engine.spy.appender.Slf4JLogger appender=com.p6spy.engine.spy.appender.StdoutLogger #appender=com.p6spy.engine.spy.appender.FileLogger #appender=com.p6spy.engine.spy.appender.Slf4JLogger # class to use for formatting log messages (default is: com.p6spy.engine.spy.appender.SingleLineFormat) #logMessageFormat=com.p6spy.engine.spy.appender.SingleLineFormat #自定义日志格式,在类中定义 logMessageFormat=com.ly.cloud.demo.strategy.P6SpyLogger databaseDialectDateFormat=yyyy-MM-dd HH:mm:ss excludecategories=info,debug,result,resultset
-
自定义日志格式类
P6SpyLogger
import com.p6spy.engine.spy.appender.MessageFormattingStrategy; import org.hibernate.engine.jdbc.internal.BasicFormatterImpl; import org.hibernate.engine.jdbc.internal.Formatter; import java.text.SimpleDateFormat; import java.util.Date; /** * @auther YangFan * @Date 2021/3/25 10:12 */ public class P6SpyLogger implements MessageFormattingStrategy { private SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss:SSS"); private static final Formatter formatter; static { formatter = new BasicFormatterImpl(); } @Override public String formatMessage(int connectionId, String now, long elapsed, String category, String prepared, String sql, String url) { StringBuilder sb = new StringBuilder(); return !"".equals(sql.trim()) ? sb.append(this.format.format(new Date())).append(" | took ").append(elapsed).append("ms | ").append(category).append(" | connection ").append(connectionId).append(formatter.format(sql)).append(";").toString() : ""; } }
3、创建实体类
Actor
@Entity
@Table(name = "actor")
@Data
public class Actor {
/**
* 主键生成采用数据库自增方式,比如MySQL的AUTO_INCREMENT
*/
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;
@Column(name = "actor_name", nullable = false, length = 128, unique = true)
private String actorName;
@Column(name = "actor_age", nullable = false)
private int actorAge;
@Column(name = "actor_email", length = 64, unique = true)
private String actorEmail;
@Column(name = "create_time", nullable = false, length = 32)
private String createTime = LocalDateTime.now().toString();
}
Work
@Entity
@Table(name = "work")
@Data
public class Work {
/**
* 主键生成采用数据库自增方式,比如MySQL的AUTO_INCREMENT
*/
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;
@Column(name = "word_name", nullable = false, length = 128)
private String workName;
}
执行Maven
插件的compile
就能在指定目录生成QActor
类和QWork
类。
4、创建Repository
需要继承 QuerydslPredicateExecutor
public interface QuerydslRepository extends JpaRepository<Actor, Long>, QuerydslPredicateExecutor<Actor> {
}
5、使用QueryDSL
5.1、原生dsl查询
-
直接根据条件查询
@RunWith(SpringRunner.class) @SpringBootTest @Slf4j public class QuerydslTest { @Autowired private JPAQueryFactory jpaQueryFactory; ObjectMapper mapper = new ObjectMapper(); /** * 直接根据条件查询 */ @Test public void testFindByActorNameAndActorEmail() { QActor qActor = QActor.actor; Actor actor = jpaQueryFactory.selectFrom(qActor) .where( qActor.actorName.eq("嘀嘀嘀"), qActor.actorEmail.eq("123456789@qq.com") ) .fetchOne(); try { String s = mapper.writeValueAsString(actor); log.info("s: {}", s); } catch (JsonProcessingException e) { } } }
-
查询所有并根据字段排序
/** * 查询所有并根据字段排序 */ @Test public void testFindAll() { QActor qActor = QActor.actor; List<Actor> actorList = jpaQueryFactory.selectFrom(qActor) .orderBy( qActor.actorAge.asc() ) .fetch(); try { String s = mapper.writeValueAsString(actorList); log.info("s: {}", s); } catch (JsonProcessingException e) { } }
-
分页查询,并根据字段排序
/** * 分页查询,并根据字段排序 */ @Test public void testFindByPagination() { int page = 0; // 第几页 int pageSize = 10; // 每页大小 QActor qActor = QActor.actor; QueryResults<Actor> actorQueryResults = jpaQueryFactory.selectFrom(qActor) .orderBy( qActor.actorAge.asc() ) .offset(page) .limit(pageSize) .fetchResults(); // 获取分页参数 long total = actorQueryResults.getTotal(); long totalPage = (total % pageSize == 0) ? (total / pageSize) : (total / pageSize + 1); log.info("分页查询第:[{}]页,pageSize:[{}],共有:[{}]数据,共有:[{}]页", page, pageSize, total, totalPage); List<Actor> actorListByPagination = actorQueryResults.getResults(); try { String s = mapper.writeValueAsString(actorListByPagination); log.info("s: {}", s); } catch (JsonProcessingException e) { } }
-
根据条件模糊查询,并指定某个字段的范围
/** * 根据条件模糊查询,并指定某个字段的范围 */ @Test public void testFindByLikeNameAndEmailAndBetweenAgeOrderById() { QActor qActor = QActor.actor; List<Actor> actorList = jpaQueryFactory.selectFrom(qActor) .where( qActor.actorName.like("name%"), qActor.actorEmail.like("email%"), qActor.actorAge.between(20, 50) ) .orderBy( qActor.id.asc() ) .fetch(); try { String s = mapper.writeValueAsString(actorList); log.info("s: {}", s); } catch (JsonProcessingException e) { } }
-
两张表关联查询
/** * 两张表关联查询 */ @Test public void testTwoTablesQuery() { QActor qActor = QActor.actor; QWork work = QWork.work; List<Tuple> fetch = jpaQueryFactory.select(qActor.id,qActor.actorName,qActor.actorAge,work.workName).from(qActor).leftJoin(work).on(qActor.id.eq(work.id)).orderBy(qActor.actorAge.desc()).fetch(); System.err.println(fetch); }
-
两张表关联查询将结果封装至vo中
/** * 查询并将结果封装至vo中 */ @Test public void testFindTwoTableToVo() { QActor qActor = QActor.actor; QWork work = QWork.work; List<ActorInfoVO> fetch = jpaQueryFactory.select(Projections.bean(ActorInfoVO.class, qActor.id, qActor.actorName, work.workName)).from(qActor).leftJoin(work).on(qActor.id.eq(work.id)).fetch(); System.err.println(fetch); }
5.2、jpa整合dsl查询
-
模糊查询并分页排序
@Autowired private QuerydslRepository querydslRepository; /** * 模糊查询并分页排序 */ @Test public void testFindByActorNameAndActorEmailPagination() { int page = 0; // 第几页 int pageSize = 10; // 每页大小 QActor qActor = QActor.actor; // 模糊查询条件 BooleanExpression expression = qActor.actorName.like("name%").and(qActor.actorEmail.like("email%")); // 排序、分页参数 Sort sort = new Sort(Sort.Direction.DESC, "actorAge"); PageRequest pageRequest = PageRequest.of(page < 0 ? 0 : page, pageSize, sort); Page<Actor> actorPage = querydslRepository.findAll(expression, pageRequest); log.info("分页查询第:[{}]页,pageSize:[{}],共有:[{}]数据,共有:[{}]页", page, pageSize, actorPage.getTotalElements(), actorPage.getTotalPages()); List<Actor> actorListByPagination = actorPage.getContent(); try { String s = mapper.writeValueAsString(actorListByPagination); log.info("s: {}", s); } catch (JsonProcessingException e) { } }
-
动态查询并分页排序
/** * 动态查询并分页排序 */ @Test public void testFindByDynamicQuery() { Integer actorAge = 45; String actorEmail = "email"; String actorName = null; String createTime = "2020-11-21"; int page = 0; // 第几页 int pageSize = 10; // 每页大小 QActor qActor = QActor.actor; // 初始化组装条件(类似where 1=1) Predicate predicate = qActor.isNotNull().or(qActor.isNull()); //执行动态条件拼装 // 相等 predicate = actorAge == null ? predicate : ExpressionUtils.and(predicate, qActor.actorAge.eq(actorAge)); // like 模糊匹配 predicate = actorEmail == null ? predicate : ExpressionUtils.and(predicate, qActor.actorEmail.like(actorEmail + "%")); predicate = actorName == null ? predicate : ExpressionUtils.and(predicate, qActor.actorName.like(actorName + "%")); // 排序、分页参数 Sort sort = new Sort(Sort.Direction.ASC, "id"); PageRequest pageRequest = PageRequest.of(page < 0 ? 0 : page, pageSize, sort); Page<Actor> actorPage = querydslRepository.findAll(predicate, pageRequest); log.info("分页查询第:[{}]页,pageSize:[{}],共有:[{}]数据,共有:[{}]页", page, pageSize, actorPage.getTotalElements(), actorPage.getTotalPages()); List<Actor> actorListByPagination = actorPage.getContent(); try { String s = mapper.writeValueAsString(actorListByPagination); log.info("s: {}", s); } catch (JsonProcessingException e) { } }
5.3、删除和修改
删除和修改需要添加@Transactional
-
修改
/** * 修改 * * 需要添加@Transactional,否则报错 */ @Transactional @Test public void testUpdate() { QWork work = QWork.work; long update = jpaQueryFactory.update(work).set(work.workName, "修改了之后的作品").where(work.id.eq(2l)).execute(); System.err.println("update成功的条数" + update); }
-
删除
/** * 删除 * * 需要添加@Transactional,否则报错 */ @Transactional @Test public void testDelete() { QWork work = QWork.work; long deleted = jpaQueryFactory.delete(work).where(work.id.eq(2l)).execute(); System.err.println("delete成功的条数" + deleted); }