数据库必知词汇:HDFS

Hadoop分布式文件系统(Hadoop Distributed File System, HDFS)是指被设计成适合运行在通用硬件上的分布式文件系统。它和现有的分布式文件系统有很多共同点。但同时,它和其他的分布式文件系统的区别也是很明显的。

HDFS有着高容错性(fault-tolerant)的特点,并且设计用来部署在低廉的(low-cost)硬件上。。HDFS能提供高吞吐量的数据访问,非常适合大规模数据集上的应用,而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求(requirements)这样可以实现流的形式访问(streaming access)文件系统中的数据。HDFS放宽了一部分POSIX约束,来实现流式读取文件系统数据的目的。HDFS在最开始是作为Apache Nutch搜索引擎项目的基础架构而开发的。HDFS是Apache Hadoop Core项目的一部分。

HDFS采用了主从(Master/Slave)结构模型,一个HDFS集群是由一个NameNode和若干个DataNode组成的。其中NameNode作为主服务器,管理文件系统的命名空间和客户端对文件的访问操作;集群中的DataNode管理存储的数据。

整个HDFS系统将由数百或数千个存储着文件数据片段的服务器组成。实际上它里面有非常巨大的组成部分,每一个组成部分都很可能出现故障,这就意味着HDFS里的总是有一些部件是失效的,因此,故障的检测和自动快速恢复是HDFS一个很核心的设计目标。

运行在HDFS之上的应用程序必须流式地访问它们的数据集,它不是运行在普通文件系统之上的普通程序。HDFS被设计成适合批量处理的,而不是用户交互式的。重点是在数据吞吐量,而不是数据访问的反应时间,POSIX的很多硬性需求对于HDFS应用都是非必须的,去掉POSIX一小部分关键语义可以获得更好的数据吞吐率。

运行在HDFS之上的程序有很大量的数据集。典型的HDFS文件大小是GB到TB的级别。所以,HDFS被调整成支持大文件。它应该提供很高的聚合数据带宽,一个集群中支持数百个节点,一个集群中还应该支持千万级别的文件。

资料来源:
1.Apache Hadoop http://hadoop.apache.org/
2.杨旭,汤海京,丁刚毅编著,数据科学导论 第2版,北京理工大学出版社,2017.01
3.陈吉荣, 乐嘉锦. 基于Hadoop生态系统的大数据解决方案综述[J]. 计算机工程与科学, 2013, 35(10):25-35.
4.Hadoop生态系统 [美] Kevin Sitto(凯文·斯托),[美] Marshall Presser(马歇尔·普瑞斯) 著

上一篇:初识React-Redux之粗暴理解入门


下一篇:js中三种全局变量声明方法