太吊了,反正我不会
/*
HDU 4035 dp求期望的题。
题意:
有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树,
从结点1出发,开始走,在每个结点i都有3种可能:
1.被杀死,回到结点1处(概率为ki)
2.找到出口,走出迷宫 (概率为ei)
3.和该点相连有m条边,随机走一条
求:走出迷宫所要走的边数的期望值。 设 E[i]表示在结点i处,要走出迷宫所要走的边数的期望。E[1]即为所求。 叶子结点:
E[i] = ki*E[1] + ei*0 + (1-ki-ei)*(E[father[i]] + 1);
= ki*E[1] + (1-ki-ei)*E[father[i]] + (1-ki-ei); 非叶子结点:(m为与结点相连的边数)
E[i] = ki*E[1] + ei*0 + (1-ki-ei)/m*( E[father[i]]+1 + ∑( E[child[i]]+1 ) );
= ki*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei)/m*∑(E[child[i]]) + (1-ki-ei); 设对每个结点:E[i] = Ai*E[1] + Bi*E[father[i]] + Ci; 对于非叶子结点i,设j为i的孩子结点,则
∑(E[child[i]]) = ∑E[j]
= ∑(Aj*E[1] + Bj*E[father[j]] + Cj)
= ∑(Aj*E[1] + Bj*E[i] + Cj)
带入上面的式子得
(1 - (1-ki-ei)/m*∑Bj)*E[i] = (ki+(1-ki-ei)/m*∑Aj)*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei) + (1-ki-ei)/m*∑Cj;
由此可得
Ai = (ki+(1-ki-ei)/m*∑Aj) / (1 - (1-ki-ei)/m*∑Bj);
Bi = (1-ki-ei)/m / (1 - (1-ki-ei)/m*∑Bj);
Ci = ( (1-ki-ei)+(1-ki-ei)/m*∑Cj ) / (1 - (1-ki-ei)/m*∑Bj); 对于叶子结点
Ai = ki;
Bi = 1 - ki - ei;
Ci = 1 - ki - ei; 从叶子结点开始,直到算出 A1,B1,C1; E[1] = A1*E[1] + B1*0 + C1;
所以
E[1] = C1 / (1 - A1);
若 A1趋近于1则无解... */
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<math.h>
#include<vector>
using namespace std;
const int MAXN=;
const double eps=1e-;//这里1e-8会WA。设为1e-9和1e-10可以
double k[MAXN],e[MAXN];
double A[MAXN],B[MAXN],C[MAXN]; vector<int>vec[MAXN];//存树 bool dfs(int t,int pre)//t的根结点是pre
{
int m=vec[t].size();//点t的度
A[t]=k[t];
B[t]=(-k[t]-e[t])/m;
C[t]=-k[t]-e[t];
double tmp=;
for(int i=;i<m;i++)
{
int v=vec[t][i];
if(v==pre)continue;
if(!dfs(v,t))return false;
A[t]+=(-k[t]-e[t])/m*A[v];
C[t]+=(-k[t]-e[t])/m*C[v];
tmp+=(-k[t]-e[t])/m*B[v];
}
if(fabs(tmp-)<eps)return false;
A[t]/=(-tmp);
B[t]/=(-tmp);
C[t]/=(-tmp);
return true;
}
int main()
{
// freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
int T;
int n;
int u,v;
int iCase=;
scanf("%d",&T);
while(T--)
{
iCase++;
scanf("%d",&n);
for(int i=;i<=n;i++)vec[i].clear();
for(int i=;i<n;i++)
{
scanf("%d%d",&u,&v);
vec[u].push_back(v);
vec[v].push_back(u);
}
for(int i=;i<=n;i++)
{
scanf("%lf%lf",&k[i],&e[i]);
k[i]/=;
e[i]/=;
}
printf("Case %d: ",iCase);
if(dfs(,-)&&fabs(-A[])>eps)
{
printf("%.6lf\n",C[]/(-A[]));
}
else printf("impossible\n");
}
}