「leetcode」452. 用最少数量的箭引爆气球【贪心算法】详细图解

「leetcode」452. 用最少数量的箭引爆气球【贪心算法】详细图解 「leetcode」452. 用最少数量的箭引爆气球【贪心算法】详细图解 「leetcode」452. 用最少数量的箭引爆气球【贪心算法】详细图解 「leetcode」452. 用最少数量的箭引爆气球【贪心算法】详细图解 「leetcode」452. 用最少数量的箭引爆气球【贪心算法】详细图解 「leetcode」452. 用最少数量的箭引爆气球【贪心算法】详细图解

452. 用最少数量的箭引爆气球

在二维空间中有许多球形的气球。对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标。由于它是水平的,所以纵坐标并不重要,因此只要知道开始和结束的横坐标就足够了。开始坐标总是小于结束坐标。

一支弓箭可以沿着 x 轴从不同点完全垂直地射出。在坐标 x 处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足 xstart ≤ x ≤ xend,则该气球会被引爆。可以射出的弓箭的数量没有限制。 弓箭一旦被射出之后,可以无限地前进。我们想找到使得所有气球全部被引爆,所需的弓箭的最小数量。

给你一个数组 points ,其中 points [i] = [xstart,xend] ,返回引爆所有气球所必须射出的最小弓箭数。

示例 1:
输入:points = [[10,16],[2,8],[1,6],[7,12]]

输出:2
解释:对于该样例,x = 6 可以射爆 [2,8],[1,6] 两个气球,以及 x = 11 射爆另外两个气球

示例 2:
输入:points = [[1,2],[3,4],[5,6],[7,8]]
输出:4

示例 3:
输入:points = [[1,2],[2,3],[3,4],[4,5]]
输出:2

示例 4:
输入:points = [[1,2]]
输出:1

示例 5:
输入:points = [[2,3],[2,3]]
输出:1

提示:

  • 0 <= points.length <= 10^4
  • points[i].length == 2
  • -2^31 <= xstart < xend <= 2^31 - 1

思路

如何使用最少的弓箭呢?

直觉上来看,貌似只射重叠最多的气球,用的弓箭一定最少,那么有没有当前重叠了三个气球,我射两个,留下一个和后面的一起射这样弓箭用的更少的情况呢?

尝试一下举反例,发现没有这种情况。

那么就试一试贪心吧!局部最优:当气球出现重叠,一起射,所用弓箭最少。全局最优:把所有气球射爆所用弓箭最少。

算法确定下来了,那么如何模拟气球射爆的过程呢?是在数组中移除元素还是做标记呢?

如果真实的模拟射气球的过程,应该射一个,气球数组就remove一个元素,这样最直观,毕竟气球被射了。

但仔细思考一下就发现:如果把气球排序之后,从前到后遍历气球,被射过的气球仅仅跳过就行了,没有必要让气球数组remote气球,只要记录一下箭的数量就可以了。

以上为思考过程,已经确定下来使用贪心了,那么开始解题。

为了让气球尽可能的重叠,需要对数组进行排序

那么按照气球起始位置排序,还是按照气球终止位置排序呢?

其实都可以!只不过对应的遍历顺序不同,我就按照气球的起始位置排序了。

既然按照其实位置排序,那么就从前向后遍历气球数组,靠左尽可能让气球重复。

从前向后遍历遇到重叠的气球了怎么办?

如果气球重叠了,重叠气球中右边边界的最小值 之前的区间一定需要一个弓箭

以题目示例: [[10,16],[2,8],[1,6],[7,12]]为例,如图:(方便起见,已经排序)

「leetcode」452. 用最少数量的箭引爆气球【贪心算法】详细图解

可以看出首先第一组重叠气球,一定是需要一个箭,气球3,的左边界大于了 第一组重叠气球的最小右边界,所以再需要一支箭来射气球3了。

C++代码如下:

class Solution {
private:
    static bool cmp(const vector<int>& a, const vector<int>& b) {
        return a[0] < b[0];
    }
public:
    int findMinArrowShots(vector<vector<int>>& points) {
        if (points.size() == 0) return 0;
        sort(points.begin(), points.end(), cmp);

        int result = 1; // points 不为空至少需要一支箭
        for (int i = 1; i < points.size(); i++) {
            if (points[i][0] > points[i - 1][1]) {  // 气球i和气球i-1不挨着,注意这里不是>=
                result++; // 需要一支箭
            }
            else {  // 气球i和气球i-1挨着
                points[i][1] = min(points[i - 1][1], points[i][1]); // 更新重叠气球最小右边界
            }
        }
        return result;
    }
};
  • 时间复杂度O(nlogn),因为有一个快排
  • 空间复杂度O(1)

可以看出代码并不复杂。

注意事项

注意题目中说的是:满足 xstart ≤ x ≤ xend,则该气球会被引爆。那么说明两个气球挨在一起不重叠也可以一起射爆,

所以代码中 if (points[i][0] > points[i - 1][1]) 不能是>=

总结

这道题目贪心的思路很简单也很直接,就是重复的一起射了,但本题我认为是有难度的。

就算思路都想好了,模拟射气球的过程,很多同学真的要去模拟了,实时把气球从数组中移走,这么写的话就复杂了。

而且寻找重复的气球,寻找重叠气球最小右边界,其实都有代码技巧。

贪心题目有时候就是这样,看起来很简单,思路很直接,但是一写代码就感觉贼复杂无从下手。

这里其实是需要代码功底的,那代码功底怎么练?

多看多写多总结!

循序渐进学算法,认准「代码随想录」,Carl手把手带你过关斩将!

「leetcode」452. 用最少数量的箭引爆气球【贪心算法】详细图解

上一篇:LFU 算法c++的两种实现


下一篇:Jquery 选择器 详解 js 判断字符串是否包含另外一个字符串