Python实现机器学习算法:AdaBoost算法

Python程序

'''
数据集:Mnist
训练集数量:60000(实际使用:10000)
测试集数量:10000(实际使用:1000)
层数:40
------------------------------
运行结果:
正确率:97%
运行时长:65m
''' import time
import numpy as np def loadData(fileName):
'''
加载文件
:param fileName:要加载的文件路径
:return: 数据集和标签集
'''
# 存放数据及标记
dataArr = []
labelArr = []
# 读取文件
fr = open(fileName)
# 遍历文件中的每一行
for line in fr.readlines():
# 获取当前行,并按“,”切割成字段放入列表中
# strip:去掉每行字符串首尾指定的字符(默认空格或换行符)
# split:按照指定的字符将字符串切割成每个字段,返回列表形式
curLine = line.strip().split(',')
# 将每行中除标记外的数据放入数据集中(curLine[0]为标记信息)
# 在放入的同时将原先字符串形式的数据转换为整型
# 此外将数据进行了二值化处理,大于128的转换成1,小于的转换成0,方便后续计算
dataArr.append([int(int(num) > 128) for num in curLine[1:]])
# 将标记信息放入标记集中
# 放入的同时将标记转换为整型 # 转换成二分类任务
# 标签0设置为1,反之为-1
if int(curLine[0]) == 0:
labelArr.append(1)
else:
labelArr.append(-1)
# 返回数据集和标记
return dataArr, labelArr def calc_e_Gx(trainDataArr, trainLabelArr, n, div, rule, D):
'''
计算分类错误率
:param trainDataArr:训练数据集数字
:param trainLabelArr: 训练标签集数组
:param n: 要操作的特征
:param div:划分点
:param rule:正反例标签
:param D:权值分布D
:return:预测结果, 分类误差率
'''
# 初始化分类误差率为0
e = 0
# 将训练数据矩阵中特征为n的那一列单独剥出来做成数组。因为其他元素我们并不需要,
# 直接对庞大的训练集进行操作的话会很慢
x = trainDataArr[:, n]
# 同样将标签也转换成数组格式,x和y的转换只是单纯为了提高运行速度
# 测试过相对直接操作而言性能提升很大
y = trainLabelArr
predict = [] # 依据小于和大于的标签依据实际情况会不同,在这里直接进行设置
if rule == 'LisOne':
L = 1
H = -1
else:
L = -1
H = 1 # 遍历所有样本的特征m
for i in range(trainDataArr.shape[0]):
if x[i] < div:
# 如果小于划分点,则预测为L
# 如果设置小于div为1,那么L就是1,
# 如果设置小于div为-1,L就是-1
predict.append(L)
# 如果预测错误,分类错误率要加上该分错的样本的权值(8.1式)
if y[i] != L:
e += D[i]
elif x[i] >= div:
# 与上面思想一样
predict.append(H)
if y[i] != H:
e += D[i]
# 返回预测结果和分类错误率e
# 预测结果其实是为了后面做准备的,在算法8.1第四步式8.4中exp内部有个Gx,要用在那个地方
# 以此来更新新的D
return np.array(predict), e def createSigleBoostingTree(trainDataArr, trainLabelArr, D):
'''
创建单层提升树
:param trainDataArr:训练数据集数组
:param trainLabelArr: 训练标签集数组
:param D: 算法8.1中的D
:return: 创建的单层提升树
''' # 获得样本数目及特征数量
m, n = np.shape(trainDataArr)
# 单层树的字典,用于存放当前层提升树的参数
# 也可以认为该字典代表了一层提升树
sigleBoostTree = {}
# 初始化分类误差率,分类误差率在算法8.1步骤(2)(b)有提到
# 误差率最高也只能100%,因此初始化为1
sigleBoostTree['e'] = 1 # 对每一个特征进行遍历,寻找用于划分的最合适的特征
for i in range(n):
# 因为特征已经经过二值化,只能为0和1,因此分切分时分为-0.5, 0.5, 1.5三挡进行切割
for div in [-0.5, 0.5, 1.5]:
# 在单个特征内对正反例进行划分时,有两种情况:
# 可能是小于某值的为1,大于某值得为-1,也可能小于某值得是-1,反之为1
# 因此在寻找最佳提升树的同时对于两种情况也需要遍历运行
# LisOne:Low is one:小于某值得是1
# HisOne:High is one:大于某值得是1
for rule in ['LisOne', 'HisOne']:
# 按照第i个特征,以值div进行切割,进行当前设置得到的预测和分类错误率
Gx, e = calc_e_Gx(trainDataArr, trainLabelArr, i, div, rule, D)
# 如果分类错误率e小于当前最小的e,那么将它作为最小的分类错误率保存
if e < sigleBoostTree['e']:
sigleBoostTree['e'] = e
# 同时也需要存储最优划分点、划分规则、预测结果、特征索引
# 以便进行D更新和后续预测使用
sigleBoostTree['div'] = div
sigleBoostTree['rule'] = rule
sigleBoostTree['Gx'] = Gx
sigleBoostTree['feature'] = i
# 返回单层的提升树
return sigleBoostTree def createBosstingTree(trainDataList, trainLabelList, treeNum=50):
'''
创建提升树
创建算法依据“8.1.2 AdaBoost算法” 算法8.1
:param trainDataList:训练数据集
:param trainLabelList: 训练测试集
:param treeNum: 树的层数
:return: 提升树
'''
# 将数据和标签转化为数组形式
trainDataArr = np.array(trainDataList)
trainLabelArr = np.array(trainLabelList)
# 没增加一层数后,当前最终预测结果列表
finallpredict = [0] * len(trainLabelArr)
# 获得训练集数量以及特征个数
m, n = np.shape(trainDataArr) # 依据算法8.1步骤(1)初始化D为1/N
D = [1 / m] * m
# 初始化提升树列表,每个位置为一层
tree = []
# 循环创建提升树
for i in range(treeNum):
# 得到当前层的提升树
curTree = createSigleBoostingTree(trainDataArr, trainLabelArr, D)
# 根据式8.2计算当前层的alpha
alpha = 1 / 2 * np.log((1 - curTree['e']) / curTree['e'])
# 获得当前层的预测结果,用于下一步更新D
Gx = curTree['Gx']
# 依据式8.4更新D
# 考虑到该式每次只更新D中的一个w,要循环进行更新知道所有w更新结束会很复杂(其实
# 不是时间上的复杂,只是让人感觉每次单独更新一个很累),所以该式以向量相乘的形式,
# 一个式子将所有w全部更新完。
# 该式需要线性代数基础,如果不太熟练建议补充相关知识,当然了,单独更新w也一点问题
# 没有
# np.multiply(trainLabelArr, Gx):exp中的y*Gm(x),结果是一个行向量,内部为yi*Gm(xi)
# np.exp(-1 * alpha * np.multiply(trainLabelArr, Gx)):上面求出来的行向量内部全体
# 成员再乘以-αm,然后取对数,和书上式子一样,只不过书上式子内是一个数,这里是一个向量
# D是一个行向量,取代了式中的wmi,然后D求和为Zm
# 书中的式子最后得出来一个数w,所有数w组合形成新的D
# 这里是直接得到一个向量,向量内元素是所有的w
# 本质上结果是相同的
D = np.multiply(D, np.exp(-1 * alpha * np.multiply(trainLabelArr, Gx))) / sum(D)
# 在当前层参数中增加alpha参数,预测的时候需要用到
curTree['alpha'] = alpha
# 将当前层添加到提升树索引中。
tree.append(curTree) # -----以下代码用来辅助,可以去掉---------------
# 根据8.6式将结果加上当前层乘以α,得到目前的最终输出预测
finallpredict += alpha * Gx
# 计算当前最终预测输出与实际标签之间的误差
error = sum([1 for i in range(len(trainDataList)) if np.sign(finallpredict[i]) != trainLabelArr[i]])
# 计算当前最终误差率
finallError = error / len(trainDataList)
# 如果误差为0,提前退出即可,因为没有必要再计算算了
if finallError == 0:
return tree
# 打印一些信息
print('iter:%d:%d, sigle error:%.4f, finall error:%.4f' % (i, treeNum, curTree['e'], finallError))
# 返回整个提升树
return tree def predict(x, div, rule, feature):
'''
输出单独层预测结果
:param x: 预测样本
:param div: 划分点
:param rule: 划分规则
:param feature: 进行操作的特征
:return:
'''
# 依据划分规则定义小于及大于划分点的标签
if rule == 'LisOne':
L = 1
H = -1
else:
L = -1
H = 1 # 判断预测结果
if x[feature] < div:
return L
else:
return H def test(testDataList, testLabelList, tree):
'''
测试
:param testDataList:测试数据集
:param testLabelList: 测试标签集
:param tree: 提升树
:return: 准确率
'''
# 错误率计数值
errorCnt = 0
# 遍历每一个测试样本
for i in range(len(testDataList)):
# 预测结果值,初始为0
result = 0
# 依据算法8.1式8.6
# 预测式子是一个求和式,对于每一层的结果都要进行一次累加
# 遍历每层的树
for curTree in tree:
# 获取该层参数
div = curTree['div']
rule = curTree['rule']
feature = curTree['feature']
alpha = curTree['alpha']
# 将当前层结果加入预测中
result += alpha * predict(testDataList[i], div, rule, feature)
# 预测结果取sign值,如果大于0 sign为1,反之为0
if np.sign(result) != testLabelList[i]:
errorCnt += 1
# 返回准确率
return 1 - errorCnt / len(testDataList) if __name__ == '__main__':
# 开始时间
start = time.time() # 获取训练集
print('start read transSet')
trainDataList, trainLabelList = loadData('../Mnist/mnist_train.csv') # 获取测试集
print('start read testSet')
testDataList, testLabelList = loadData('../Mnist/mnist_test.csv') # 创建提升树
print('start init train')
tree = createBosstingTree(trainDataList[:10000], trainLabelList[:10000], 40) # 测试
print('start to test')
accuracy = test(testDataList[:1000], testLabelList[:1000], tree)
print('the accuracy is:%d' % (accuracy * 100), '%') # 结束时间
end = time.time()
print('time span:', end - start)

程序运行结果

start read transSet
start read testSet
start init train
iter:0:40, sigle error:0.0804, finall error:0.0804
iter:1:40, sigle error:0.1448, finall error:0.0804
iter:2:40, sigle error:0.1362, finall error:0.0585
iter:3:40, sigle error:0.1864, finall error:0.0667
iter:4:40, sigle error:0.2249, finall error:0.0474
iter:5:40, sigle error:0.2634, finall error:0.0437
iter:6:40, sigle error:0.2626, finall error:0.0377
iter:7:40, sigle error:0.2935, finall error:0.0361
iter:8:40, sigle error:0.3230, finall error:0.0333
iter:9:40, sigle error:0.3034, finall error:0.0361
iter:10:40, sigle error:0.3375, finall error:0.0325
iter:11:40, sigle error:0.3364, finall error:0.0340
iter:12:40, sigle error:0.3473, finall error:0.0309
iter:13:40, sigle error:0.3006, finall error:0.0294
iter:14:40, sigle error:0.3267, finall error:0.0275
iter:15:40, sigle error:0.3584, finall error:0.0288
iter:16:40, sigle error:0.3492, finall error:0.0257
iter:17:40, sigle error:0.3506, finall error:0.0256
iter:18:40, sigle error:0.3665, finall error:0.0240
iter:19:40, sigle error:0.3769, finall error:0.0251
iter:20:40, sigle error:0.3828, finall error:0.0213
iter:21:40, sigle error:0.3733, finall error:0.0229
iter:22:40, sigle error:0.3785, finall error:0.0218
iter:23:40, sigle error:0.3867, finall error:0.0219
iter:24:40, sigle error:0.3850, finall error:0.0208
iter:25:40, sigle error:0.3823, finall error:0.0201
iter:26:40, sigle error:0.3825, finall error:0.0204
iter:27:40, sigle error:0.3874, finall error:0.0188
iter:28:40, sigle error:0.3952, finall error:0.0186
iter:29:40, sigle error:0.4018, finall error:0.0193
iter:30:40, sigle error:0.3889, finall error:0.0177
iter:31:40, sigle error:0.3939, finall error:0.0183
iter:32:40, sigle error:0.3838, finall error:0.0182
iter:33:40, sigle error:0.4021, finall error:0.0171
iter:34:40, sigle error:0.4119, finall error:0.0164
iter:35:40, sigle error:0.4093, finall error:0.0164
iter:36:40, sigle error:0.4135, finall error:0.0167
iter:37:40, sigle error:0.4099, finall error:0.0171
iter:38:40, sigle error:0.3871, finall error:0.0163
iter:39:40, sigle error:0.4085, finall error:0.0154
start to test
the accuracy is:97 %
time span: 3777.730945825577
上一篇:在VC++空工程中使用MFC类,采用Unicode字符集后,运行工程程序报错的解决方案


下一篇:Debian下Cannot set LC_CTYPE to default locale: No such file or directory解决方法