Problem Description
传说在遥远的地方有一个非常富裕的村落,有一天,村长决定进行制度改革:重新分配房子。
这可是一件大事,关系到人民的住房问题啊。村里共有n间房间,刚好有n家老百姓,考虑到每家都要有房住(如果有老百姓没房子住的话,容易引起不安定因素),每家必须分配到一间房子且只能得到一间房子。
另一方面,村长和另外的村领导希望得到最大的效益,这样村里的机构才会有钱.由于老百姓都比较富裕,他们都能对每一间房子在他们的经济范围内出一定的价格,比如有3间房子,一家老百姓可以对第一间出10万,对第2间出2万,对第3间出20万.(当然是在他们的经济范围内).现在这个问题就是村领导怎样分配房子才能使收入最大.(村民即使有钱购买一间房子但不一定能买到,要看村领导分配的).
Input
输入数据包含多组测试用例,每组数据的第一行输入n,表示房子的数量(也是老百姓家的数量),接下来有n行,每行n个数表示第i个村名对第j间房出的价格(n<=300)。
Output
请对每组数据输出最大的收入值,每组的输出占一行。
#include<bits/stdc++.h> using namespace std; const int MAXN=310; const int INF=0x3f3f3f3f; int nx,ny;//两边的点数 int g[MAXN][MAXN];//二分图描述 int linker[MAXN],lx[MAXN],ly[MAXN];//y中各点匹配状态, x,y中的点标号 int slack[MAXN]; bool visx[MAXN],visy[MAXN]; bool DFS(int x) { visx[x]=true; for(int y=0;y<ny;y++) { if(visy[y]) continue; int tmp=lx[x]+ly[y]-g[x][y]; if(tmp==0) { visy[y]=true; if(linker[y]==-1||DFS(linker[y])) { linker[y]=x; return true; } } else if(slack[y]>tmp) slack[y]=tmp; } return false; } int KM() { memset(linker,-1,sizeof(linker)); memset(ly,0,sizeof(ly)); for(int i=0;i<nx;i++) { lx[i]=-INF; for(int j=0;j<ny;j++) if(g[i][j]>lx[i]) lx[i]=g[i][j]; } for(int x=0;x<nx;x++) { for(int i=0;i<ny;i++) slack[i]=INF; while(true) { memset(visx,false,sizeof(visx)); memset(visy,false,sizeof(visy)); if(DFS(x)) break; int d=INF; for(int i=0;i<ny;i++) if(!visy[i]&&d>slack[i]) d=slack[i]; for(int i=0;i<nx;i++) if(visx[i]) lx[i]-=d; for(int i=0;i<ny;i++) { if(visy[i]) ly[i]+=d; else slack[i]-=d; } } } int res=0; for(int i=0;i<ny;i++) if(linker[i]!=-1) res+=g[linker[i]][i]; return res; } //HDU 2255 int main() { int n; while(scanf("%d",&n)==1) { for(int i=0;i<n;i++) for(int j=0;j<n;j++) scanf("%d",&g[i][j]); nx=ny=n; printf("%d\n",KM()); } return 0; }