矩阵中的最大递增路径
解题思路:动态规划
class Solution { public int longestIncreasingPath(int[][] matrix) { if(matrix.length==0||matrix[0].length==0){ return 0; } int xlen = matrix.length; int ylen = matrix[0].length; int[][][] flags = new int[xlen][ylen][2]; for(int i=0;i<xlen;i++){ for(int j=0;j<ylen;j++){ for(int k=0;k<2;k++){ flags[i][j][k]=1; } } } int cur = 0; boolean ischange = false; int ans =1; while(true){ ischange = false; for(int i=0;i<xlen;i++){ for(int j=0;j<ylen;j++){ if(i-1>=0&&matrix[i][j]>matrix[i-1][j]&&flags[i][j][1-cur]<flags[i-1][j][cur]+1){ flags[i][j][1-cur] = flags[i-1][j][cur]+1; } if(j-1>=0&&matrix[i][j]>matrix[i][j-1]&&flags[i][j][1-cur]<flags[i][j-1][cur]+1) { flags[i][j][1-cur] = flags[i][j-1][cur]+1; } if(i+1<xlen&&matrix[i][j]>matrix[i+1][j]&&flags[i][j][1-cur]<flags[i+1][j][cur]+1) { flags[i][j][1-cur] = flags[i+1][j][cur]+1; } if(j+1<ylen&&matrix[i][j]>matrix[i][j+1]&&flags[i][j][1-cur]<flags[i][j+1][cur]+1) { flags[i][j][1-cur] = flags[i][j+1][cur]+1; } if(flags[i][j][1-cur]!=flags[i][j][cur]) { ischange = true; } } } if(ischange) { cur = 1-cur; ans++; }else { return ans; } } } }
另一种方法:
解题思路:dfs+记忆矩阵