KNN算法

KNN算法

1. KNN算法原理

k近邻方法是一种惰性学习算法,可以用于回归和分类,它的主要思想是投票机制,对于一个测试实例x, 我们在有标签的训练数据集上找到和最相近的k个数据,用他们的label进行投票,分类问题则进行表决投票,回归问题使用加权平均或者直接平均的方法。

1.1 K值选择

kNN中的k是一个超参数,需要我们进行指定,一般情况下这个k和数据有很大关系,都是交叉验证进行选择,但是建议使用交叉验证的时候,k∈[2,20],使用交叉验证得到一个很好的k值。需注意最好K的取值为奇数,防止出现平票而无法分类的情况。

k值还可以表示我们的模型复杂度,k值越小,意味着模型复杂度变大,更容易过拟合(用极少数的样例来绝对这个预测的结果,很容易产生偏见,这就是过拟合)。k值越大,学习的估计误差越小,但是学习的近似误差就会增大,容易造成欠拟合。

1.2 距离计算

样本之间的距离的计算,我们一般使用对于一般使用Lp距离进行计算。当p=1时候,称为曼哈顿距离(Manhattan distance),当p=2时候,称为欧氏距离(Euclidean distance),当p=∞时候,称为极大距离(infty distance), 表示各个坐标的距离最大值,另外也包含夹角余弦等方法。

一般采用欧式距离较多,但是文本分类则倾向于使用余弦来计算相似度。

对于两个向量 ( x i , x j ) (x_i,x_j) (xi​,xj​),一般使用 L p L_p Lp​距离进行计算。 假设特征空间 X X X是n维实数向量空间 R n R^n Rn , 其中, x i , x j ∈ X x_i,x_j \in X xi​,xj​∈X,
x i = ( x i ( 1 ) , x i ( 2 ) , … , x i ( n ) ) x_{i}=\left(x_{i}^{(1)}, x_{i}^{(2)}, \ldots, x_{i}^{(n)}\right) xi​=(xi(1)​,xi(2)​,…,xi(n)​), x j = ( x j ( 1 ) , x j ( 2 ) , … , x j ( n ) ) x_{j}=\left(x_{j}^{(1)}, x_{j}^{(2)}, \ldots, x_{j}^{(n)}\right) xj​=(xj(1)​,xj(2)​,…,xj(n)​)
x i , x j x_i,x_j xi​,xj​的 L p L_p Lp​距离定义为:
L p ( x i , x j ) = ( ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ p ) 1 p L_{p}\left(x_{i}, x_{j}\right)=\left(\sum_{l=1}^{n}\left|x_{i}^{(l)}-x_{j}^{(l)}\right|^{p}\right)^{\frac{1}{p}} Lp​(xi​,xj​)=(l=1∑n​∣∣∣​xi(l)​−xj(l)​∣∣∣​p)p1​

这里的 p ≥ 1 p\geq1 p≥1. 当 p = 2 p=2 p=2时候,称为欧氏距离(Euclidean distance):
L 2 ( x i , x j ) = ( ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ 2 ) 1 2 L_{2}\left(x_{i}, x_{j}\right)=\left(\sum_{l=1}^{n}\left|x_{i}^{(l)}-x_{j}^{(l)}\right|^{2}\right)^{\frac{1}{2}} L2​(xi​,xj​)=(l=1∑n​∣∣∣​xi(l)​−xj(l)​∣∣∣​2)21​
当 p = 1 p=1 p=1时候,称为曼哈顿距离(Manhattan distance):
L 1 ( x i , x j ) = ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ L_{1}\left(x_{i}, x_{j}\right)=\sum_{l=1}^{n}\left|x_{i}^{(l)}-x_{j}^{(l)}\right| L1​(xi​,xj​)=l=1∑n​∣∣∣​xi(l)​−xj(l)​∣∣∣​
当 p = ∞ p=\infty p=∞时候,称为极大距离(infty distance), 表示各个坐标的距离最大值:
L p ( x i , x j ) = max ⁡ l n ∣ x i ( l ) − x j ( l ) ∣ L_{p}\left(x_{i}, x_{j}\right)=\max _{l} n\left|x_{i}^{(l)}-x_{j}^{(l)}\right| Lp​(xi​,xj​)=lmax​n∣∣∣​xi(l)​−xj(l)​∣∣∣​

1.3 算法优缺点

优点:

  • 算法简单,容易理解
  • 对于边界不规则的数据效果较好,效果优于线性分类器。

缺点:

  • 预测时需用到全部现有数据集,因此只适用于小数据集。
  • 非平衡数据预测效果较差。
  • 不适合特征维度太多的数据。
上一篇:【Matlab 004期】【路径规划】基于人工蜂群的路径规划matlab源码


下一篇:PE结构笔记