bzoj 2458: [BeiJing2011]最小三角形 题解

【前言】话说好久没有写题解了。到暑假了反而忙。o(╯□╰)o

【原题】

2458: [BeiJing2011]最小三角形

Time Limit: 10 Sec  Memory Limit: 128 MB

Submit: 574  Solved: 177

[

id=2458" style="color:blue; text-decoration:none">Submit

][Status]

Description

Xaviera如今遇到了一个有趣的问题。

平面上有N个点。Xaviera想找出周长最小的三角形。

因为点许多。分布也很乱,所以Xaviera想请你来解决问题。

为了减小问题的难度,这里的三角形也包含共线的三点。

Input

第一行包括一个整数N表示点的个数。

接下来N行每行有两个整数,表示这个点的坐标。

Output

输出仅仅有一行。包括一个6位小数,为周长最短的三角形的周长(四舍五入)。

Sample Input

4

1 1

2 3

3 3

3 4


Sample Output

3.414214




HINT

100%的数据中N≤200000。

Source

【分析】今天新学了解决这类问题的方法——分治。

没错,就是分治。

先讲一下n是10^5级别的平面近期点对吧(CF 245 DIV 2 D)。非常easy懂。

具体的原理能够參考这个博客。讲的非常具体。

(非常多时候仅仅要感性认识原理就可以)以下讲一下具体做法。

①对于平面上的点。按x坐标排序(这是永久排序)。

②每次递归(l。r)。函数的返回值是第l个到第r个之间的全部点的近期点对。

③假设l=r。那么返回无穷大;假设l+1=r。就直接返回两个点的距离。

④每次先递归(l。mid)和(mid+1,r)。显然,这两个会有两个返回值。最好还是设为d1和d2。

首先我们设D=MIN(d1,d2)。即当前的最优值临时是D。

⑤显然,另一种情况。左边那块的某个点和右边那块的某个点产生关系。那么,我们能够从mid这个位置向左跑到mid-D,向右跑到mid+D,然后把这一段中的点都拎出来——由于仅仅有这两段中的点才有可能产生小于D的贡献。

⑥这时候我们要意识到潜在复杂度的保证(实际原理也不难懂呵)。

首先,假设直接枚举两两点要N^2。我们先把拎出来的点按y排序。

(NlogN)然后看似也是N^2的枚举,仅仅是加了一个优化(从底下開始枚举i。假设Y[J]-Y[I]>D就直接break)——这样可证明差点儿是线性。

总复杂度N*logN*logN。

再讲一下本题。也是几乎相同道理。

由于是三角形,我们把一些细节改一下就可以。

【代码】

#include<cstdio>
#include<cmath>
#include<algorithm>
#define N 200005
#define INF 210000000000.0
using namespace std;
struct arr{int x,y;}a[N],num[N];int n,i,Test;
inline bool cmpx(const arr &a,const arr &b){return a.x<b.x;}
inline bool cmpy(const arr &a,const arr &b){return a.y<b.y;}
inline double dis(const arr &a,const arr &b){return sqrt((a.x-b.x)*1.*(a.x-b.x)+(a.y-b.y)*1.*(a.y-b.y));}
inline double work(int l,int r)
{
if (l==r) return INF;
if (l+1==r) return INF;
if (l+2==r) return dis(a[l],a[l+1])+dis(a[l+1],a[r])+dis(a[l],a[r]);
int mid=(l+r)>>1;
double d1=work(l,mid),d2=work(mid+1,r);
double D=min(d1,d2),ans=D,DD=D/2.0;int cnt=0;
for (int i=l;i<=r;i++)
if (fabs(a[mid].x-a[i].x)<=DD) num[++cnt]=a[i];
sort(num+1,num+cnt+1,cmpy);
for (int i=1;i<cnt-1;i++)
for (int j=i+1;j<cnt;j++)
{
if (num[j].y-num[i].y>DD) break;
for (int k=j+1;k<=cnt;k++)
{
if (num[k].y-num[i].y>DD) break;
double temp=dis(num[i],num[j])+dis(num[i],num[k])+dis(num[j],num[k]);
if (temp<ans) ans=temp;
}
}
return ans;
}
int main()
{
read(n);//读入优化就不贴了。 for (i=1;i<=n;i++)
read(a[i].x),read(a[i].y);
sort(a+1,a+n+1,cmpx);
printf("%.6lf",work(1,n));
return 0;
}
上一篇:java并发编程的艺术(一)---锁的基本属性


下一篇:最好用的placeholder插件,jQuery插件EnPlaceholder