http://www.lydsy.com/JudgeOnline/problem.php?id=2458
Description
Xaviera现在遇到了一个有趣的问题。
平面上有N个点,Xaviera想找出周长最小的三角形。
由于点非常多,分布也非常乱,所以Xaviera想请你来解决这个问题。
为了减小问题的难度,这里的三角形也包括共线的三点。
Input
第一行包含一个整数N表示点的个数。
接下来N行每行有两个整数,表示这个点的坐标。
Output
输出只有一行,包含一个6位小数,为周长最短的三角形的周长(四舍五入)。
Sample Input
4
1 1
2 3
3 3
3 4
1 1
2 3
3 3
3 4
Sample Output
3.414214
HINT
100%的数据中N≤200000。
————————————————
哇作为练手平面分治的题我好高兴,一次A了。
不过最开始怀疑自己的思路有问题于是查了题解……然后发现竟然是对的。
额……
复述一下,和平面分治差不多,将solve函数的含义改为当前区间内最小三角形的周长。
然后我们发现对于一个三角形两点之间长度最大为d/2。
所以我们在归并排序y的时候把和中轴距离d/2的点捡出来。
然后三重循环枚举搞定(同时距离d/2不要忘了)
#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef double dl;
const dl INF=1e20;
const int N=;
inline int read(){
int X=,w=; char ch=;
while(!isdigit(ch)) {w|=ch=='-';ch=getchar();}
while(isdigit(ch)) X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct node{
dl x;
dl y;
}p[N],a[N],b[N];
bool cmp(node A,node B){
return A.x<B.x;
}
inline dl dis(int i,int j){
return sqrt(pow(b[i].x-b[j].x,)+pow(b[i].y-b[j].y,));
}
dl solve(int l,int r){
if(l>=r)return INF;
int mid=(l+r)>>;
dl x0=(p[mid].x+p[mid+].x)/2.0;
dl d=min(solve(l,mid),solve(mid+,r));
int l1=l,r1=mid+,num=;
for(int i=l;i<=r;i++){
if(l1<=mid&&(r1>r||p[l1].y<p[r1].y)){
a[i]=p[l1++];
if(x0-d/<a[i].x)b[++num]=a[i];
}else{
a[i]=p[r1++];
if(a[i].x<x0+d/)b[++num]=a[i];
}
}
for(int i=l;i<=r;i++)p[i]=a[i]; for(int i=;i<=num;i++){
for(int j=i+;j<=num;j++){
if(b[j].y-b[i].y>=d/)break;
for(int k=j+;k<=num;k++){
if(b[k].y-b[j].y>=d/)break;
d=min(d,dis(i,j)+dis(j,k)+dis(k,i));
}
}
}
return d;
}
int main(){
int n=read();
for(int i=;i<=n;i++){
p[i].x=read();
p[i].y=read();
}
sort(p+,p+n+,cmp);
printf("%.6f\n",solve(,n));
return ;
}