【原】无脑操作:ElasticSearch学习笔记(01)

开篇来自于经典的“保安的哲学三问”(你是谁,在哪儿,要干嘛)

问题一、ElasticSearch是什么?有什么用处?

答:截至2018年12月28日,从ElasticSearch官网(https://www.elastic.co/cn/products)上,得知:ElasticSearch是基于 JSON 的分布式搜索和分析引擎,专为实现水平扩展、高可靠性和管理便捷性而设计。用于搜索、分析和存储您的数据。

问题二、ElasticSearch的由来?

答:大约在2010年,一个叫Shay Banon的待业工程师跟随他的新婚妻子来到伦敦,他的妻子想在伦敦学习做一名厨师。而他在伦敦寻找工作的期间,接触到了Lucene的早期版本,他想为自己的妻子开发一个方便搜索菜谱的应用。直接使用Lucene构建搜索会有很多的坑以及重复性的工作,所以Shay便在Lucene的基础上不断进行抽象来让Java程序嵌入搜索变得更容易一些,经过一段时间的打磨,就诞生了他的第一个开源作品,他给自己的这个作品起了个名字,叫 “Compass”,中文即“指南针”的意思。之后,Shay找到了一份新工作,新工作是处在一个高性能分布式的开发环境中。他在工作中渐渐发现,越来越需要一个易用的高性能、实时、分布式搜索服务,于是他决定重写Compass,将它从一个库打造成了一个独立的server,并将其改名为Elasticsearch。Elasticsearch发布的第一个版本是在2010年的二月份,从那之后,Elasticsearch便成了Github上最受人瞩目的项目之一,并且很快就有超过300名开发者加入进来贡献了自己的代码。后来Shay和另一位合伙人成立了公司专注打造Elasticsearch,他们对Elasticsearch进行了一些商业化的包装和支持。但是,Elasticsearch承诺,永远都将是开源并且免费的。不过悲剧的是,Shay承诺为妻子开发的菜谱搜索应用,到现在还没做出来……(划重点:ElasticSearch基于Lucene)

问题三、ElasticSearch有什么功能?有什么优势?

答:截至2018年12月28日,从ElasticSearch官网(https://www.elastic.co/cn/products/elasticsearch)上,得知:Elasticsearch 是一个分布式、Restful风格的搜索和数据分析引擎,能够解决不断涌现出的各种用例。作为 Elastic Stack 的核心,它集中存储您的数据,帮助您发现意料之中以及意料之外的情况。具备存储、查询和分析功能。具备速度、可扩展性、弹性、灵活性、操作友好、客户端库丰富等优势,是开源的、分布式、基于 Restful API、支持 PB 甚至更高数量级的搜索引擎工具。

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

1、ElasticSearch的安装及结构

ElasticSearch支持Windows安装,直接到官网的下载页面(https://www.elastic.co/cn/downloads/elasticsearch)下载即可。

注意,如果使用ELK全家桶,官方建议ElasticSearch、Logstash、Kibana三个产品选择同一版本号。截至2018年12月28日,ElasticSearch的最新版本是6.5.4。本篇笔记使用的是6.5.0。下载后放在D:\ELK目录下。

【原】无脑操作:ElasticSearch学习笔记(01)

bin:elasticsearch的启动脚本等
config:配置文件目录
data:当前节点的分片数据
lib:运行依赖的jar包
logs:日志文件目录
modules:模块库
plugins:插件目录

2、ElasticSearch的运行

Windows版本的Elasticsearch运行还是很简单的,直接在bin目录下,找到elasticsearch.bat这个批处理文件,双击运行就可以了。当然也可以通过命令行窗口进入到该目录下,输入elasticsearch回车进行执行。

出现如下信息说明Elasticsearch已经启动起来了,并且运行在本机的9200端口上。

【原】无脑操作:ElasticSearch学习笔记(01)

在浏览器的地址栏中输入:localhost:9200,如果能看到如下信息,说明启动成功

{
"name" : "HanF71F",
"cluster_name" : "elasticsearch",
"cluster_uuid" : "kYp2rOofTwWN1-kj7Qjw_A",
"version" : {
"number" : "6.5.0",
"build_flavor" : "default",
"build_type" : "zip",
"build_hash" : "816e6f6",
"build_date" : "2018-11-09T18:58:36.352602Z",
"build_snapshot" : false,
"lucene_version" : "7.5.0",
"minimum_wire_compatibility_version" : "5.6.0",
"minimum_index_compatibility_version" : "5.0.0"
},
"tagline" : "You Know, for Search"
}

cluster_name: ElasticSearch配置的集群名称,默认是elasticsearch,es服务会通过广播方式自动连接在同一网段下的es服务,通过多播方式进行通信,同一网段下可以有多个集群,通过集群名称这个属性来区分不同的集群。

cluster_uuid:ElasticSearch配置的集群唯一编号
build_flavor:编译特点
lucene_version:ElasticSearch基于lucene的,lucene的版本号

3、ElasticSearch的工具

① 结合Chrome浏览器的ElasticSearchHead插件使用

下载名为chromeFOR.COM_elasticsearch-head_v0.1.3.crx的Chrome插件,安装后,在Chrome浏览器的右上角点击Elastic Search Head这个图标即可使用

【原】无脑操作:ElasticSearch学习笔记(01)

② 结合Kibana工具使用

个人觉得Kibana是和ElasticSearch结合是很好的,毕竟都是一家的产品。Windows下的Kibana使用也很简单,直接下载同ElasticSearch一样版本的Kibana(https://www.elastic.co/downloads/kibana

【原】无脑操作:ElasticSearch学习笔记(01)

直接在bin目录下,找到kibana.bat这个批处理文件,双击运行就可以了。当然也可以通过命令行窗口进入到该目录下,输入kibana回车进行执行。

出现如下信息说明Kibana已经启动起来了,并且运行在本机的5601端口上。

【原】无脑操作:ElasticSearch学习笔记(01)

在浏览器的地址栏中输入:localhost:5601,如果能看到如下信息,说明Kibana启动成功。

【原】无脑操作:ElasticSearch学习笔记(01)

4、 ElasticSearch的基本术语

将ElasticSearch和关系型数据库做一个类比

关系型数据库 数据库(Database) 表(Table) 行(Rows) 列(Columns)
ElasticSearch 索引(Index) 类型(Type) 文档(Docments) 字段(Fields)

一个ElasticSearch集群可以包含多个索引(数据库),一个索引中可以包含多个类型(表),一个类型中可以包含多个文档(行),一个文档中可以包含多个字段(列)。

Elasticsearch可以理解为是面向文档型数据库。数据用JSON作为文档序列化的格式。

① Near Realtime(NRT):近实时的意思,表示从写入数据到数据可以被搜索有一个小延迟(大概1秒);基于es执行搜索和分析可以达到秒级。

② Cluster:集群,包含多个节点,每个节点属于哪个集群是通过配置(集群名称,默认是elasticsearch)来决定的,对于中小型应用来说,开始阶段常常一个集群对应一个节点。

③ Node:节点,集群中的一个节点,节点也有一个名称(默认是随机分配的),在执行运维管理操作时节点名称很重要,默认节点会加入一个名称为“elasticsearch”的集群,如果直接启动一堆节点,那么它们会自动组成一个elasticsearch集群,当然一个节点也可以组成一个elasticsearch集群。

④ Document&field:文档,es中的最小数据单元,一个document可以是一条客户数据,一条商品分类数据,一条订单数据,通常用JSON数据结构表示,每个index下的type中,都可以去存储多个document。一个document里面有多个field,每个field就是一个数据字段。

⑤ Index:索引,包含一堆有相似结构的文档数据,比如可以有一个客户索引,商品分类索引,订单索引,索引有一个名称。一个index包含很多document,一个index就代表了一类类似的或者相同的document。比如说建立一个product index,商品索引,里面可能就存放了所有的商品数据,所有的商品document。

⑥ Type:类型,每个索引里都可以有一个或多个type,type是index中的一个逻辑数据分类,一个type下的document,都有相同的field,比如博客系统,有一个索引,可以定义用户数据type,博客数据type,评论数据type。

⑦ Shard:单台机器无法存储大量数据,es可以将一个索引中的数据切分为多个shard,分布在多台服务器上存储。有了shard就可以横向扩展,存储更多数据,让搜索和分析等操作分布到多台服务器上去执行,提升吞吐量和性能。每个shard都是一个lucene index。

⑧ Replica:任何一个服务器随时可能故障或宕机,此时shard可能就会丢失,因此可以为每个shard创建多个replica副本。replica可以在shard故障时提供备用服务,保证数据不丢失,多个replica还可以提升搜索操作的吞吐量和性能。primary shard(建立索引时一次设置,不能修改,默认5个),replica shard(随时修改数量,默认1个),默认每个索引10个shard,5个primary shard,5个replica shard,最小的高可用配置,是2台服务器。

5、ElasticSearch的基本使用(CRUD)

首先对Restful风格的动作有一个了解:GET(查询操作),POST(新增/修改操作),PUT(修改操作),DELETE(删除操作)

下列命令均在Kibana的DevTools中执行,DevTools中输入关键字有相应的提示,很不错。

① 检查集群的健康状况

GET /_cat/health?v
epoch      timestamp cluster       status node.total node.data shards pri relo init unassign pending_tasks max_task_wait_time active_shards_percent
1546176515 13:28:35 elasticsearch green 1 1 1 1 0 0 0 0 - 100.0%

② 查看集群中所有的索引

GET /_cat/indices?v
health status index     uuid                   pri rep docs.count docs.deleted store.size pri.store.size
green open .kibana_1 qqZcESKyTvCWJjF7ToyUWw 1 0 1 0 5.1kb 5.1kb

③ 创建索引(可以使用ElasticSearchHead插件的图形化创建方式,也可以手写命令)

PUT /study_elasticsearch?pretty
#! Deprecation: the default number of shards will change from [5] to [1] in 7.0.0; if you wish to continue using the default of [5] shards, 
you must manage this on the create index request or with an index template
{
"acknowledged" : true,
"shards_acknowledged" : true,
"index" : "study_elasticsearch"
}

创建后再次执行查看索引的命令,可以看到这时有两个索引存在了。

GET /_cat/indices?v
health status index               uuid                   pri rep docs.count docs.deleted store.size pri.store.size
green open .kibana_1 qqZcESKyTvCWJjF7ToyUWw 1 0 1 0 5.1kb 5.1kb
yellow open study_elasticsearch P1yCgFQiS1Si2Nc0IlZflA 5 1 0 0 1.1kb 1.1kb

④ 删除索引

DELETE /study_elasticsearch?pretty
{
"acknowledged" : true
}

删除后再次执行查看索引的命令,可以看到这时剩一个索引存在了。

GET /_cat/indices?v
health status index     uuid                   pri rep docs.count docs.deleted store.size pri.store.size
green open .kibana_1 qqZcESKyTvCWJjF7ToyUWw 1 0 1 0 5.1kb 5.1kb

⑤ 新增文档

PUT /study_elasticsearch/person/1
{
"name" : "zhang yang",
"age" : 21,
"job" : "boss"
}
{
"error": {
"root_cause": [
{
"type": "cluster_block_exception",
"reason": "blocked by: [FORBIDDEN/12/index read-only / allow delete (api)];"
}
],
"type": "cluster_block_exception",
"reason": "blocked by: [FORBIDDEN/12/index read-only / allow delete (api)];"
},
"status": 403
}

从错误信息清晰的看到是索引只读的提示,所以考虑放开索引的只读设置。

PUT _settings
{
"index": {
"blocks": {
"read_only_allow_delete": "false"
}
}
}
{
"acknowledged" : true
}

再次尝试新增文档

PUT /study_elasticsearch/person/1
{
"name" : "zhang yang",
"age" : 21,
"job" : "boss"
}
{
"_index" : "study_elasticsearch",
"_type" : "person",
"_id" : "1",
"_version" : 1,
"result" : "created",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 0,
"_primary_term" : 1
}
PUT /study_elasticsearch/person/2
{
"name" : "zhang xiong jia",
"age" : 20,
"job" : "employee"
}
{
"_index" : "study_elasticsearch",
"_type" : "person",
"_id" : "2",
"_version" : 1,
"result" : "created",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 0,
"_primary_term" : 1
}
PUT /study_elasticsearch/person/3
{
"name" : "wu qing qing",
"age" : 22,
"job" : "manager"
}
{
"_index" : "study_elasticsearch",
"_type" : "person",
"_id" : "3",
"_version" : 1,
"result" : "created",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 0,
"_primary_term" : 1
}

注意,此时的文档版本version为1

⑥ 查询文档数量

GET /study_elasticsearch/person/_count
{
"count" : 3,
"_shards" : {
"total" : 5,
"successful" : 5,
"skipped" : 0,
"failed" : 0
}
}

⑦ 查询文档(不加任何查询条件,本篇用的都是Search Lite API的写法)

GET /study_elasticsearch/person/_search
{
"took" : 2,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : 3,
"max_score" : 1.0,
"hits" : [
{
"_index" : "study_elasticsearch",
"_type" : "person",
"_id" : "2",
"_score" : 1.0,
"_source" : {
"name" : "zhang xiong jia",
"age" : 20,
"job" : "employee"
}
},
{
"_index" : "study_elasticsearch",
"_type" : "person",
"_id" : "1",
"_score" : 1.0,
"_source" : {
"name" : "zhang yang",
"age" : 21,
"job" : "boss"
}
},
{
"_index" : "study_elasticsearch",
"_type" : "person",
"_id" : "3",
"_score" : 1.0,
"_source" : {
"name" : "wu qing qing",
"age" : 22,
"job" : "manager"
}
}
]
}
}

注意:对某个索引(Index)下某个类型(Type)没加任何条件的查询,结果默认会展示出前20条文档(Documents)

⑧ 查询文档(带查询条件,本篇用的都是Search Lite API的写法)

直接通过id获取文档:

GET /study_elasticsearch/person/1
{
"_index" : "study_elasticsearch",
"_type" : "person",
"_id" : "1",
"_version" : 1,
"found" : true,
"_source" : {
"name" : "zhang yang",
"age" : 21,
"job" : "boss"
}
}

通过查询字段的值获取文档:(按age赋值22查询,找到了吴局)

GET /study_elasticsearch/person/_search?q=age:22
{
"took" : 10,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : 1,
"max_score" : 1.0,
"hits" : [
{
"_index" : "study_elasticsearch",
"_type" : "person",
"_id" : "3",
"_score" : 1.0,
"_source" : {
"name" : "wu qing qing",
"age" : 22,
"job" : "manager"
}
}
]
}
}

通过查询字段的值获取文档:(按name赋值zhang查询,找到了名字中有zhang的大小张行长)

GET /study_elasticsearch/person/_search?q=name:zhang
{
"took" : 3,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : 2,
"max_score" : 0.2876821,
"hits" : [
{
"_index" : "study_elasticsearch",
"_type" : "person",
"_id" : "2",
"_score" : 0.2876821,
"_source" : {
"name" : "zhang xiong jia",
"age" : 20,
"job" : "employee"
}
},
{
"_index" : "study_elasticsearch",
"_type" : "person",
"_id" : "1",
"_score" : 0.2876821,
"_source" : {
"name" : "zhang yang",
"age" : 21,
"job" : "boss"
}
}
]
}
}

⑨ 更新文档(替换)

PUT /study_elasticsearch/person/1
{
"name" : "hong zi jun",
"age" : 21,
"job" : "CEO"
}
{
"_index" : "study_elasticsearch",
"_type" : "person",
"_id" : "1",
"_version" : 2,
"result" : "updated",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 1,
"_primary_term" : 1
}

注意:此时id为1的这条文档的版本version变成了2,文档的内容也变成了洪行长

GET /study_elasticsearch/person/1
{
"_index" : "study_elasticsearch",
"_type" : "person",
"_id" : "1",
"_version" : 2,
"found" : true,
"_source" : {
"name" : "hong zi jun",
"age" : 21,
"job" : "CEO"
}
}

这种替换的方式做更新,需要替换的内容和原先的内容字段一致,如果不一致就会用替换内容替换掉原先的内容

PUT /study_elasticsearch/person/1
{
"name" : "ye yu",
"gender" : "female"
}
{
"_index" : "study_elasticsearch",
"_type" : "person",
"_id" : "1",
"_version" : 3,
"result" : "updated",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 2,
"_primary_term" : 1
}

再次查询,发现person的字段和内容均发生了变化,变成叶阿姨了。显然,这种替换方式的缺点在于全量替换了,不想替换的也被替换了。

GET /study_elasticsearch/person/1
{
"_index" : "study_elasticsearch",
"_type" : "person",
"_id" : "1",
"_version" : 3,
"found" : true,
"_source" : {
"name" : "ye yu",
"gender" : "female"
}
}

⑩ 更新文档(更新)

先把id为1的数据替换回去

PUT /study_elasticsearch/person/1
{
"name" : "zhang yang",
"age" : 21,
"job" : "boss"
}
{
"_index" : "study_elasticsearch",
"_type" : "person",
"_id" : "1",
"_version" : 4,
"result" : "updated",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 3,
"_primary_term" : 1
}
GET /study_elasticsearch/person/1
{
"_index" : "study_elasticsearch",
"_type" : "person",
"_id" : "1",
"_version" : 4,
"found" : true,
"_source" : {
"name" : "zhang yang",
"age" : 21,
"job" : "boss"
}
}

使用POST结合_update做更新

POST /study_elasticsearch/person/1/_update
{
"doc" : {
"job" : "CTO"
}
}
{
"_index" : "study_elasticsearch",
"_type" : "person",
"_id" : "1",
"_version" : 5,
"result" : "noop",
"_shards" : {
"total" : 0,
"successful" : 0,
"failed" : 0
}
}

再查询一下,发现id为1的文档的job字段发生了改变,其他的字段及内容没有变化

GET /study_elasticsearch/person/1
{
"_index" : "study_elasticsearch",
"_type" : "person",
"_id" : "1",
"_version" : 5,
"found" : true,
"_source" : {
"name" : "zhang yang",
"age" : 21,
"job" : "CTO"
}
}

⑪ 删除文档

DELETE /study_elasticsearch/person/1
{
"_index" : "study_elasticsearch",
"_type" : "person",
"_id" : "1",
"_version" : 6,
"result" : "deleted",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 5,
"_primary_term" : 1
}

再查询一下,找不到该条文档了

GET /study_elasticsearch/person/1
{
"_index" : "study_elasticsearch",
"_type" : "person",
"_id" : "1",
"found" : false
}

如果是想删除所有的文档,可以如下操作

POST /study_elasticsearch/person/_delete_by_query
{
"query": {
"match_all": {}
}
}
{
"took" : 42,
"timed_out" : false,
"total" : 2,
"deleted" : 2,
"batches" : 1,
"version_conflicts" : 0,
"noops" : 0,
"retries" : {
"bulk" : 0,
"search" : 0
},
"throttled_millis" : 0,
"requests_per_second" : -1.0,
"throttled_until_millis" : 0,
"failures" : [ ]
}

再查询一下,发现没有数据了

GET /study_elasticsearch/person/_search
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : 0,
"max_score" : null,
"hits" : [ ]
}
}

至此,最简单基本的操作就讲完了,是不是特别无脑啊(*^_^*)

上一篇:Jquery EasyUI Combotree只能选择叶子节点且叶子节点有多选框


下一篇:【原】无脑操作:eclipse + maven搭建SSM框架