HDU 1815, POJ 2749 Building roads
pid=1815" target="_blank" style="">题目链接HDU
题目链接POJ
题意:
有n个牛棚, 还有两个中转站S1和S2, S1和S2用一条路连接起来。
为了使得随意牛棚两个都能够有道路联通,如今要让每一个牛棚都连接一条路到S1或者S2。
有a对牛棚互相有仇恨,所以不能让他们的路连接到同一个中转站。
还有b对牛棚互相喜欢,所以他们的路必须连到同一个中专站。
道路的长度是两点的曼哈顿距离。
问最小的随意两牛棚间的距离中的最大值是多少?
思路:二分距离。考虑每两个牛棚之间4种连边方式,然后依据二分的长度建立表达式,然后跑2-sat推断就可以
代码:
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <vector>
#include <algorithm>
#include <cmath>
using namespace std; const int MAXNODE = 505; struct TwoSet {
int n;
vector<int> g[MAXNODE * 2];
bool mark[MAXNODE * 2];
int S[MAXNODE * 2], sn; void init(int tot) {
n = tot * 2;
for (int i = 0; i < n; i += 2) {
g[i].clear();
g[i^1].clear();
}
memset(mark, false, sizeof(mark));
} void add_Edge(int u, int uval, int v, int vval) {
u = u * 2 + uval;
v = v * 2 + vval;
g[u^1].push_back(v);
g[v^1].push_back(u);
} void delete_Edge(int u, int uval, int v, int vval) {
u = u * 2 + uval;
v = v * 2 + vval;
g[u^1].pop_back();
g[v^1].pop_back();
} bool dfs(int u) {
if (mark[u^1]) return false;
if (mark[u]) return true;
mark[u] = true;
S[sn++] = u;
for (int i = 0; i < g[u].size(); i++) {
int v = g[u][i];
if (!dfs(v)) return false;
}
return true;
} bool solve() {
for (int i = 0; i < n; i += 2) {
if (!mark[i] && !mark[i + 1]) {
sn = 0;
if (!dfs(i)){
for (int j = 0; j < sn; j++)
mark[S[j]] = false;
sn = 0;
if (!dfs(i + 1)) return false;
}
}
}
return true;
}
} gao; const int N = 505;
int n, a, b; struct Point {
int x, y;
void read() {
scanf("%d%d", &x, &y);
}
} s1, s2, p[N], A[N * 2], B[N * 2]; int dis(Point a, Point b) {
int dx = a.x - b.x;
int dy = a.y - b.y;
return abs(dx) + abs(dy);
} int g[N][N][4]; bool judge(int d) {
gao.init(n);
for (int i = 0; i < a; i++) {
gao.add_Edge(A[i].x - 1, 0, A[i].y - 1, 0);
gao.add_Edge(A[i].x - 1, 1, A[i].y - 1, 1);
}
for (int i = 0; i < b; i++) {
gao.add_Edge(B[i].x - 1, 0, B[i].x - 1, 1);
gao.add_Edge(B[i].x - 1, 0, B[i].y - 1, 1);
gao.add_Edge(B[i].y - 1, 0, B[i].x -1 , 1);
gao.add_Edge(B[i].y - 1, 0, B[i].y - 1, 1);
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {
if (g[i][j][3] > d)
gao.add_Edge(i, 0, j, 1);
if (g[i][j][2] > d)
gao.add_Edge(i, 1, j, 0);
if (g[i][j][1] > d)
gao.add_Edge(i, 0, j, 0);
if (g[i][j][0] > d)
gao.add_Edge(i, 1, j, 1);
}
}
return gao.solve();
} int main() {
while (~scanf("%d%d%d", &n, &a, &b)) {
s1.read(); s2.read();
for (int i = 0; i < n; i++) {
p[i].read();
for (int j = 0; j < i; j++) {
g[i][j][0] = dis(p[i], s1) + dis(p[j], s1);
g[i][j][1] = dis(p[i], s2) + dis(p[j], s2);
g[i][j][2] = dis(p[i], s1) + dis(p[j], s2) + dis(s1, s2);
g[i][j][3] = dis(p[i], s2) + dis(p[j], s1) + dis(s1, s2);
}
}
for (int i = 0; i < a; i++) A[i].read();
for (int i = 0; i < b; i++) B[i].read();
int l = 0, r = 7777777;
if (!judge(r)) printf("-1\n");
else {
while (l < r) {
int mid = (l + r) / 2;
if (judge(mid)) r = mid;
else l = mid + 1;
}
printf("%d\n", l);
}
}
return 0;
}
版权声明:本文博主原创文章。博客,未经同意不得转载。