题目:
给定一个整数数组 nums ,返回 nums[i] XOR nums[j] 的最大运算结果,其中 0 ≤ i ≤ j < n 。
示例 1:
输入:nums = [3,10,5,25,2,8]
输出:28
解释:最大运算结果是 5 XOR 25 = 28.
示例 2:
输入:nums = [0]
输出:0
示例 3:
输入:nums = [2,4]
输出:6
示例 4:
输入:nums = [8,10,2]
输出:10
示例 5:
输入:nums = [14,70,53,83,49,91,36,80,92,51,66,70]
输出:127
提示:
1 <= nums.length <= 2 * 104
0 <= nums[i] <= 231 - 1
进阶:
你可以在 O(n) 的时间解决这个问题吗?
注意:本题与主站 421 题相同: https://leetcode-cn.com/problems/maximum-xor-of-two-numbers-in-an-array/
答案:
class Solution {
// 字典树的根节点
Trie root = new Trie();
// 最高位的二进制位编号为 30
static final int HIGH_BIT = 30;
public int findMaximumXOR(int[] nums) {
int n = nums.length;
int x = 0;
for (int i = 1; i < n; ++i) {
// 将 nums[i-1] 放入字典树,此时 nums[0 .. i-1] 都在字典树中
add(nums[i - 1]);
// 将 nums[i] 看作 ai,找出最大的 x 更新答案
x = Math.max(x, check(nums[i]));
}
return x;
}
public void add(int num) {
Trie cur = root;
for (int k = HIGH_BIT; k >= 0; --k) {
//取每一位数字,从高位开始
int bit = (num >> k) & 1;
if (bit == 0) {
if (cur.left == null) {
cur.left = new Trie();
}
cur = cur.left;
}
else {
if (cur.right == null) {
cur.right = new Trie();
}
cur = cur.right;
}
}
}
public int check(int num) {
Trie cur = root;
int x = 0;
for (int k = HIGH_BIT; k >= 0; --k) {
int bit = (num >> k) & 1;
if (bit == 0) {
// a_i 的第 k 个二进制位为 0,应当往表示 1 的子节点 right 走
if (cur.right != null) {
cur = cur.right;
x = x * 2 + 1;
} else {
cur = cur.left;
x = x * 2;
}
} else {
// a_i 的第 k 个二进制位为 1,应当往表示 0 的子节点 left 走
if (cur.left != null) {
cur = cur.left;
x = x * 2 + 1;
} else {
cur = cur.right;
x = x * 2;
}
}
}
return x;
}
}
class Trie {
// 左子树指向表示 0 的子节点
Trie left = null;
// 右子树指向表示 1 的子节点
Trie right = null;
}