扩展欧几里得求乘法逆元

在开始之前我们先介绍3个定理:

1.乘法逆元(在*中也叫倒数,当然是 mod p后的,其实就是倒数不是吗?):

如果ax≡1 (mod p),且gcd(a,p)=1(a与p互质),则称a关于模p的乘法逆元为x。

2.费马小定理(定义来自*):

假如a是一个整数p是一个质数,而整数a不是p的倍数,则有a^(p-1)≡1(mod p)

它是欧拉定理的一个特殊情况(即扩展欧几里得求乘法逆元扩展欧几里得求乘法逆元
3.

扩展欧几里得

(定义来自*):

已知整数a、b,扩展欧几里得算法可以在求得a、b的最大公约数的同时,能找到整数x、y(其中一个很可能是负数),使它们满足贝祖等式扩展欧几里得求乘法逆元

 

好了,在明白上面的定理后我们开始分析乘法逆元:ax≡1 (mod p) 这个等式用中文描述就是 a乘一个数x并模p等于1,即 a%p*x%p=res,res%p=1;看上去就是同余定理的一个简单等式- -。那么问题来了。

 

为什么可以用费马小定理来求逆元呢?

由费马小定理 ap-1≡1(mod p) , 变形得 a*ap-2≡1(mod p),答案已经很明显了:若a,p互质,因为a*ap-2≡1(mod p)且a*x≡1(mod p),则x=ap-2(mod p),用快速幂可快速求之。

 

为什么可以用扩展欧几里得求得逆元?

我们都知道模就是余数,比如12%5=12-5*2=2,18%4=18-4*4=2。(/是程序运算中的除)

那么ax≡1 (mod p)即ax-yp=1.把y写成+的形式就是ax+py=1,为方便理解下面我们把p写成b就是ax+by=1。就表示x是a的模b乘法逆元,y是b的模a乘法逆元。然后就可以用扩展欧几里得求了。

 

知道逆元怎么算之后,那么乘法逆元有什么用呢?

做题时如果结果过大一般都会让你模一个数,确保结果不是很大,而这个数一般是1e9+7,而且这个数又是个素数,加减乘与模运算的顺序交换不会影响结果,但是除法不行。有的题目要求结果mod一个大质数,如果原本的结果中有除法,比如除以a,那就可以乘以a的逆元替代。(除一个数等于乘它的倒数,虽然这里的逆元不完全是倒数,但可以这么理解,毕竟乘法逆元就是倒数的扩展)。

 来源:https://www.cnblogs.com/dupengcheng/p/5487362.html

上一篇:.Net 多线程 异步编程 Await、Async和Task


下一篇:树莓派开启热点