博弈---威佐夫博奕(Wythoff Game)

这个写的不错

威佐夫博奕(Wythoff
Game):有两堆各若干个物品,两个人轮流从某一堆或同

时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。



    这种情况下是颇为复杂的。我们用(ak,bk)(ak ≤ bk ,k=0,1,2,…,n)表示

两堆物品的数量并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们

称为奇异局势。前几个奇异局势是:(0,0)、(1,2)、(3,5)、(4,7)、(6,

10)、(8,13)、(9,15)、(11,18)、(12,20)。

可以看出,a0=b0=0,ak是未在前面出现过的最小自然数,而 bk= ak + k,奇异局势有

如下三条性质:

1。任何自然数都包含在一个且仅有一个奇异局势中。

    由于ak是未在前面出现过的最小自然数,所以有ak > ak-1 ,而 bk= ak + k > ak

-1 + k-1 = bk-1 > ak-1 。所以性质1。成立。

    2。任意操作都可将奇异局势变为非奇异局势。

    事实上,若只改变奇异局势(ak,bk)的某一个分量,那么另一个分量不可能在其

他奇异局势中,所以必然是非奇异局势。如果使(ak,bk)的两个分量同时减少,则由

于其差不变,且不可能是其他奇异局势的差,因此也是非奇异局势。

    3。采用适当的方法,可以将非奇异局势变为奇异局势。

假设面对的局势是(a,b),若 b = a,则同时从两堆中取走 a 个物体,就变为了

奇异局势(0,0);如果a = ak ,b > bk,那么,取走b  – bk个物体,即变为奇异局

势;如果 a = ak ,  b < bk ,则同时从两堆中拿走 ak – ab – ak个物体,变为奇异局

势( ab – ak , ab – ak+ b – ak);如果a > ak ,b= ak + k,则从第一堆中拿走多余

的数量a – ak 即可;如果a < ak ,b= ak + k,分两种情况,第一种,a=aj (j < k)

,从第二堆里面拿走 b – bj 即可;第二种,a=bj (j < k),从第二堆里面拿走 b – a

j 即可。

从如上性质可知,两个人如果都采用正确操作,那么面对非奇异局势,先拿者必胜

;反之,则后拿者取胜。

那么任给一个局势(a,b),怎样判断它是不是奇异局势呢?我们有如下公式:

ak =[k(1+√5)/2],bk= ak + k  (k=0,1,2,…,n 方括号表示取整函数)



奇妙的是其中出现了黄金分割数(1+√5)/2 = 1。618…,因此,由ak,bk组成的矩形近

似为黄金矩形,由于2/(1+√5)=(√5-1)/2,可以先求出j=[a(√5-1)/2],若a=[

j(1+√5)/2],那么a = aj,bj = aj + j,若不等于,那么a = aj+1,bj+1 = aj+1

+ j + 1,若都不是,那么就不是奇异局势。然后再按照上述法则进行,一定会遇到奇异

局势。

#include"stdio.h"
#include"string.h"
#include"string.h"
#include"math.h"
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)!=-1)
{
if(n<m) {n=n^m;m=n^m;n=n^m;} //不用中间变量的n,m值交换
int k=n-m;
n=(int)(k*(1+sqrt(5.0))/2);
if(n==m) printf("0\n"); //输
else printf("1\n"); //赢
}
return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

上一篇:append、appendTo、prepend、prependTo、before、insertBefore、after、insertAfter、replaceAll方法被调用后,原本在页面上显示的元素会消失


下一篇:HTML 标签 为页面上的所有链接规定默认地址或默认目标