思路:详细证明见博弈总结
如何判断威佐夫博弈的奇异局势?
对于状态(a, b),c = b - a,如果是奇异局势必定满足 a == c * (1+√5)/ 2。
AC代码
#include <cstdio> #include <cmath> #include <algorithm> #include <cstring> #include <utility> #include <string> #include <iostream> #include <map> #include <set> #include <vector> #include <queue> #include <stack> using namespace std; #define eps 1e-10 #define inf 0x3f3f3f3f #define PI pair<int, int> typedef long long LL; const int maxn = 100 + 5; const double gold = (sqrt(5.0)+1); int main() { int a, b; while(scanf("%d%d", &a, &b) == 2) { int x = min(a, b), y = max(a, b); a = x, b = y; int c = b - a; if(a == (int)(c * gold / 2)) printf("0\n"); else printf("1\n"); } return 0; }
如有不当之处欢迎指出!