其实很naive...
证明的主要意义在于说明两种运算如有分配律就可以做矩乘
若二元运算 \(\oplus , \otimes\) 分别满足交换律,且有 \(\otimes\) 对 \(\oplus\) 的分配律,即
\[a \otimes ( b \oplus c ) = a \otimes b + a \otimes c = (b \oplus c) \otimes a \]
(事实上如果没有交换律矩阵乘法根本就没有意义)
据此定义矩阵乘法 \(A * B = C\) ,即
\[C_{i,j} = \bigoplus _{k=1}^n A_{i,k} \otimes B_{k,j} \]
( \(A,B,C\) 为矩阵,用 \(A_{i,j}\) 表示矩阵 \(A\) 中第 \(i\) 行第 \(j\) 列的元素)
则矩阵乘法具有结合律:
\[(A*B)*C = A*(B*C) \]
证明:
\[\begin{aligned} ( ( A*B ) *C ) _{i,j} &= \bigoplus_{k=1}^{n} (A*B)_{i,k} \otimes C_{k,j} \\ &= \bigoplus_{k=1}^{n} (\bigoplus_{l=1}^n A_{i,l} \otimes B_{l,k}) \otimes C_{k,j} \\ &= \bigoplus_{k=1}^{n} \bigoplus_{l=1}^n A_{i,l} \otimes B_{l,k} \otimes C_{k,j} \quad &\text{...分配律} \\ &= \bigoplus_{l=1}^{n} \bigoplus_{k=1}^n A_{i,l} \otimes B_{l,k} \otimes C_{k,j} \quad &\text{...交换律更换枚举} \\ &= \bigoplus_{l=1}^{n} A_{i,l} \otimes ( \bigoplus_{k=1}^n B_{l,k} \otimes C_{k,j} ) \quad &\text{...分配律} \\ &= \bigoplus_{l=1}^{n} A_{i,l} \otimes ({B*C})_{l,j} \\ &= (A*(B*C))_{i,j} \end{aligned} \]
2020/06/06