题意:
给你n个矩形,问你这n个矩形所围成的图形的周长是多少。
思路:
线段树的扫描线简单应用,这个题目我用的方法比较笨,就是扫描两次,上下扫描,求出多边形的上下边长和,然后同理左右扫描,求出多边形的左右边长的和,然后加起来就行了,还有这个题目有一个小小的提示,就是在重边的时候记得是先加边在删边。不然会多加边(这个地方不管也能AC显然是数据弱,不信的自己找一个简单的有重复边的测下就知道了)。
#include<stdio.h>
#include<string.h>
#include<algorithm> #define lson l ,mid ,t << 1
#define rson mid ,r ,t << 1 | 1
#define N 50000
using namespace std; typedef struct
{
int l ,r ,h ,mk;
}EDGE; typedef struct
{
int x1 ,x2 ,y1 ,y2;
}NODE; NODE node[5500];
EDGE edge[N];
int len[N] ,cnt[N];
int tmp[11000] ,num[11000]; bool camp(EDGE a ,EDGE b)
{
return a.h < b.h || a.h == b.h && a.mk > b.mk;
} int abss(int x)
{
if(x < 0) return -x ;
return x;
} void Pushup(int l ,int r ,int t)
{
if(cnt[t]) len[t] = num[r] - num[l];
else if(l + 1 == r) len[t] = 0;
else len[t] = len[t<<1] + len[t<<1|1];
} void Update(int l ,int r ,int t ,int a ,int b ,int c)
{
if(a == l && b == r)
{
cnt[t] += c;
Pushup(l ,r ,t);
return;
}
int mid = (l + r) >> 1;
if(b <= mid) Update(lson ,a ,b ,c);
else if(a >= mid) Update(rson ,a ,b ,c);
else
{
Update(lson ,a ,mid ,c);
Update(rson ,mid ,b ,c);
}
Pushup(l ,r ,t);
} int search_2(int id ,int now)
{
int low ,up ,mid ,ans;
low = 1 ,up = id;
while(low <= up)
{
mid = (low + up) >> 1;
if(now <= num[mid])
{
ans = mid;
up = mid - 1;
}
else low = mid + 1;
}
return ans;
} int main ()
{
int n ,i ,id ,sum;
while(~scanf("%d" ,&n))
{
for(i = 1 ;i <= n ;i ++)
scanf("%d %d %d %d" ,&node[i].x1 ,&node[i].y1 ,&node[i].x2 ,&node[i].y2);
for(id = 0 ,i = 1 ;i <= n ;i ++)
{
edge[++id].l = node[i].x1;
edge[id].r = node[i].x2 ,edge[id].h = node[i].y1 ,edge[id].mk = 1;
tmp[id] = node[i].x1; edge[++id].l = node[i].x1;
edge[id].r = node[i].x2 ,edge[id].h = node[i].y2 ,edge[id].mk = -1;
tmp[id] = node[i].x2;
}
sort(tmp + 1 ,tmp + id + 1);
sort(edge + 1 ,edge + id + 1 ,camp);
for(id = 0 ,i = 1 ;i <= n * 2 ;i ++)
if(i == 1 || tmp[i] != tmp[i-1]) num[++id] = tmp[i];
sum = 0;
memset(len ,0 ,sizeof(len));
memset(cnt ,0 ,sizeof(cnt));
int tt = 0;
for(i = 1 ;i <= n * 2 ;i ++)
{
int l = search_2(id ,edge[i].l);
int r = search_2(id ,edge[i].r);
Update(1 ,id ,1 ,l ,r ,edge[i].mk);
//printf("%d %d %d****\n" ,len[1] ,l ,r);
sum += abs(len[1] - tt);
tt = len[1];
} //printf("%d\n" ,sum);
for(id = 0 ,i = 1 ;i <= n ;i ++)
{
edge[++id].l = node[i].y1;
edge[id].r = node[i].y2 ,edge[id].h = node[i].x1 ,edge[id].mk = 1;
tmp[id] = node[i].y1; edge[++id].l = node[i].y1;
edge[id].r = node[i].y2 ,edge[id].h = node[i].x2 ,edge[id].mk = -1;
tmp[id] = node[i].y2;
}
sort(tmp + 1 ,tmp + id + 1);
sort(edge + 1 ,edge + id + 1 ,camp);
for(id = 0 ,i = 1 ;i <= n * 2 ;i ++)
if(i == 1 || tmp[i] != tmp[i-1]) num[++id] = tmp[i];
memset(len ,0 ,sizeof(len));
memset(cnt ,0 ,sizeof(cnt));
tt = 0;
for(i = 1 ;i <= n * 2 ;i ++)
{
int l = search_2(id ,edge[i].l);
int r = search_2(id ,edge[i].r);
Update(1 ,id ,1 ,l ,r ,edge[i].mk);
sum += abs(len[1] - tt);
tt = len[1];
}
printf("%d\n" ,sum);
}
return 0;
}