这个玩意和改进约会网站的那个差不多,它是提前把所有数字转换成了32*32像素大小的黑白图,然后转换成字符图(用0,1表示),将所有1024个像素点用一维矩阵保存下来,这样就可以通过knn计算欧几里得距离来得到最接近的答案。
import os
import operator
from numpy import *
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX, (dataSetSize,1)) - dataSet #统一矩阵,实现加减
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1) #进行累加,axis=0是按列,axis=1是按行
distances = sqDistances**0.5 #开根号
sortedDistIndicies = distances.argsort() #按升序进行排序,返回原下标
classCount = {}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1 #get是字典中的方法,前面是要获得的值,后面是若该值不存在时的默认值
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
def img2vector(filename):
f = open(filename)
returnVect = zeros((1,1024))
for i in range(32):
line = f.readline()
for j in range(32):
returnVect[0,i*32+j] = int(line[j])
return returnVect
def handwritingClassTest():
fileList = os.listdir('trainingDigits')
m = len(fileList)
traingMat = zeros((m, 1024))
hwlabels = []
for i in range(m):
fileName = fileList[i]
prefix = fileName.split('.')[0]
number = int(prefix.split('_')[0])
hwlabels.append(number)
traingMat[i,:] = img2vector('trainingDigits/%s' %fileName)
testFileList = os.listdir('testDigits')
m = len(testFileList)
errorNum = 0.0
for i in range(m):
testFileName = testFileList[i]
prefix = testFileList[i].split('.')[0]
realNumber = int(prefix.split('_')[0])
testMat = img2vector('testDigits/%s' %testFileName)
testResult = classify0(testMat, traingMat, hwlabels, 3)
if testResult != realNumber:
errorNum += 1
print('The classifier came back with: %d, the real answer is: %d' %(testResult, realNumber))
print('错误率为%f' %(errorNum/float(m)))
if __name__ == '__main__':
handwritingClassTest()