最大子段和-Program A

最大子段和

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Description

  Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14. 
 

Input

 
  The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000). 
 

Output

 
  For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases. 
 

Sample Input

2
5   6  -1  5  4  -7
7   0  6  -1  1  -6  7  -5
 

Sample Output

Case 1: 14 1 4 Case 2: 7 1 6
 
 
题目大意:给出一串序列,要求输出其子序列的最大连续和与它所在的位置。
 
 
分析:由于时间限制为一秒且n=1e5,所用两个for循环肯定超时,不过可以动态规划,也可以二分。
 
 
 
代码如下:
 
 
 
#include <iostream>
#include <cstdio>
using namespace std;
int main()
{ int i,j,kase=0,n,t,b,c,d,x,sum;
scanf("%d",&t);
while(t--)
{ scanf("%d",&n);
for(j=1;j<=n;j++)
{
scanf("%d",&x);
if(j==1)
{
sum=b=x;
i=c=d=1;
}
else
{
if(x>x+b)
{
b=x;
i=j;
}
else
b+=x;
}
if(b>sum)
{
sum=b;
c=i;
d=j;
}
}
printf("Case %d:\n",++kase);
printf("%d %d %d\n",sum,c,d);
if(t)
cout<<endl; }
return 0;
}
 
上一篇:HDOJ3743<分治>


下一篇:真正的Java学习从入门到精通