2019-10-05 23:40:13
问题描述:
问题求解:
本题首次出现在Contest 154,是一条模版题,是一条经典的求割边的问题,该问题有Tarjan算法,可以在O(n + e)的时间复杂度求解。
Tarjan算法的核心思路是维护两个数组discovery[],low[]。disc[]数组里存放访问节点的时间戳,low[]数组里存放与节点邻接的(不包含父节点)最小时间戳的节点。
每次比较父节点和子节点,如果子节点没有访问到时间戳小的节点,那么这两个节点之间必然有一条割边。
int timestamp = 1; public List<List<Integer>> criticalConnections(int n, List<List<Integer>> connections) { int[] disc = new int[n]; int[] low = new int[n]; List<List<Integer>> res = new ArrayList<>(); List<Integer>[] graph = new ArrayList[n]; for (int i = 0; i < n; i++) graph[i] = new ArrayList<>(); for (int i = 0; i < connections.size(); i++) { int u = connections.get(i).get(0); int v = connections.get(i).get(1); graph[u].add(v); graph[v].add(u); } Arrays.fill(disc, -1); helper(graph, 0, disc, low, -1, res); return res; } private void helper(List<Integer>[] graph, int node, int[] disc, int[] low, int prev, List<List<Integer>> res) { disc[node] = timestamp; low[node] = timestamp; timestamp += 1; for (int u : graph[node]) { if (u == prev) continue; if (disc[u] == -1) { helper(graph, u, disc, low, node, res); if (low[u] > disc[node]) { res.add(Arrays.asList(u, node)); } } low[node] = Math.min(low[node], low[u]); }