一、SVM
1、应用场景:
文本和图像分类。
2、优点:
分类效果好;有效处理高维空间的数据;无局部最小值问题;不易过拟合(模型中含有L2正则项);
3、缺点:
样本数据量较大需要较长训练时间;噪声不能太多;对缺失数据敏感;
二、决策树
1、应用:
金融和电子商务
2、优点:
同时处理多种类型的数据;适合大量样本的数据;对部分数据缺失不敏感;
3、缺点:
容易过拟合;对属性具有强关联性时效果不好;
三、adaboost
1、应用:
特征选择;回归问题;
2、优点:
精度高;不易过拟合;
3、缺点:
对数据不均衡敏感;耗时;
四、对比:
1.SVM与LR:
相同:不用核的话都是线性分类器;都是监督学习;都是判别模型;
不同:样本点对模型的作用不同;损失函数不同;理论基础不同(SVM基于严格的数学推导,LR基于统计);输出不同(LR可以给出概率);可处理空间维度不同;防过拟合程度不同;抗噪能力不同(SVM更好);svm需要先做归一化(距离度量);SVM容易核化。
2.SVM与决策树:略
四、参考
1、https://blog.csdn.net/sinat_32547403/article/details/72911193