public static boolean dfs(char[][] board, char[] word, int i, int j, int k) { //递归出口1 if(i<0||j<0||i>=board.length||j>=board[0].length||board[i][j]!=word[k]) { return false; }//经过这里的判断后,board[i][j]==word[k] //递归出口2,注意这里的顺序不能交换 if(k==word.length-1) { return true; } //将 board[i][j] 修改为 空字符 '' board[i][j]='\0'; //顺序:上,下,左,右找k+1 boolean res=dfs(board, word, i-1, j, k+1)||dfs(board, word, i-1, j, k+1)|| dfs(board, word, i, j-1, k+1)||dfs(board, word, i, j+1, k+1); // 还原当前矩阵元素: 将 board[i][j] 元素还原至初始值,即 word[k] 。当程序执行到这一步就说明board[i][j]==word[k] //但是不能再搜寻下去了,不满足条件,恢复数据,相当于在回溯。 board[i][j]=word[k]; return res; } public static boolean exist(char[][] board, String word) { //i=0,j=0开始搜索 char[] wordc=word.toCharArray(); for(int i=0;i<board.length;i++) { for(int j=0;j<board[0].length;j++) { if(dfs(board, wordc, i, j, 0)) { return true; } } } return false; }
题目描述:
给定一个 m x n 二维字符网格 board 和一个字符串单词 word 。如果 word 存在于网格中,返回 true ;否则,返回 false 。
单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母不允许被重复使用。
思路:
深度优先搜索: 可以理解为暴力法遍历矩阵中所有字符串可能性。DFS 通过递归,先朝一个方向搜到底,
再回溯至上个节点,沿另一个方向搜索,以此类推。
剪枝: 在搜索中,遇到 这条路不可能和目标字符串匹配成功 的情况
(例如:此矩阵元素和目标字符不同、此元素已被访问),则应立即返回,称之为 可行性剪枝 。
递归参数: 当前元素在矩阵 board 中的行列索引 i 和 j ,当前目标字符在 word 中的索引 k 。
终止条件:
返回 falsefalse : (1) 行或列索引越界 或 (2) 当前矩阵元素与目标字符不同 或 (3) 当前矩阵元素已访问过 ( (3) 可合并至 (2) ) 。
返回 truetrue : k = len(word) - 1 ,即字符串 word 已全部匹配。
递推工作:
标记当前矩阵元素: 将 board[i][j] 修改为 空字符 '' ,代表此元素已访问过,防止之后搜索时重复访问。
搜索下一单元格: 朝当前元素的 上、下、左、右 四个方向开启下层递归,使用 或 连接 (代表只需找到一条可行路径就直接返回,
不再做后续 DFS ),并记录结果至 res 。
还原当前矩阵元素: 将 board[i][j] 元素还原至初始值,即 word[k] 。
返回值:
返回布尔量 res ,代表是否搜索到目标字符串。