UOJ263 【NOIP2016】组合数问题

本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。

本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!

题目描述

组合数 CmnCnm 表示的是从 nn 个物品中选出 mm 个物品的方案数。举个例子,从 (1,2,3)(1,2,3) 三个物品中选择两个物品可以有 (1,2),(1,3),(2,3)(1,2),(1,3),(2,3) 这三种选择方法。根据组合数的定义,我们可以给出计算组合数 CmnCnm 的一般公式:

Cmn=n!m!(n−m)!Cnm=n!m!(n−m)!

其中 n!=1×2×⋯×nn!=1×2×⋯×n;特别地,定义 0!=10!=1。

小葱想知道如果给定 n,mn,m 和 kk,对于所有的 0≤i≤n,0≤j≤min(i,m)0≤i≤n,0≤j≤min(i,m) 有多少对 (i,j)(i,j) 满足 CjiCij 是 kk 的倍数。

输入格式

从标准输入读入数据。

第一行有两个整数 t,kt,k,其中 tt 代表该测试点总共有多少组测试数据,kk 的意义见问题描述。

接下来 tt 行每行两个整数 n,mn,m,其中 n,mn,m 的意义见问题描述。

输出格式

输出到标准输出。

tt 行,每行一个整数代表所有的 0≤i≤n,0≤j≤min(i,m)0≤i≤n,0≤j≤min(i,m) 中有多少对 (i,j)(i,j) 满足 CjiCij 是 kk 的倍数。

样例一

input

1 2
3 3

output

1

explanation

在所有可能的情况中,只有 C12=2C21=2 是 22的倍数。

样例二

input

2 5
4 5
6 7

output

0
7 正解:矩阵前缀和+组合数学
解题报告:
  

  这是一道很简单的数学题,可以发现其实如果根据组合中的一个基本公式:C(n,m)=C(n-1,m)+C(n-1,m-1),就可以直接递推出2000以内的所有的组合数。而我们只需要判断有多少个点对满足是k的倍数,很容易想到只要对k取模,对于为0的C(i,j)是肯定满足是k的倍数的。

  因为k是所有询问共用的,可以一开始就预处理出矩阵前缀和,之后每次O(1)查询就可以了。


注意事项:

  很多人在考场上写的是质因数分解,但是很明显有一些k并不是质数,所以并不能直接分解,应该先对k进行质因数分解,在对于这些质因数在递推中分析。

    
 #include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <string>
#include <ctime>
#include <queue>
#include <vector>
#include <cstdlib>
using namespace std;
typedef long long LL;
const int MAXN = ;
int T,k,n,m,ans;
int C[MAXN][MAXN],a[MAXN][MAXN];
int sum[MAXN][MAXN]; void work(){
scanf("%d%d",&T,&k);
C[][]=C[][]=;
for(int i=;i<=;i++){
C[i][]=;
for(int j=;j<=i;j++) {
C[i][j]=C[i-][j-]+C[i-][j];
C[i][j]%=k;
if(C[i][j]==) {
a[i][j]=;
}
}
}
for(int i=;i<=;i++)
for(int j=;j<=;j++)
sum[i][j]=sum[i-][j]+sum[i][j-]-sum[i-][j-]+a[i][j]; while(T--) {
scanf("%d%d",&n,&m); m=min(m,n);
printf("%d\n",sum[n][m]);
}
} int main()
{
work();
return ;
}
上一篇:LeetCode 556. 下一个更大元素 III(Next Greater Element III)


下一篇:WPF:ListView数据绑定及Style